(合集)《正比例》教学设计
作为一名优秀的教育工作者,就有可能用到教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么什么样的教学设计才是好的呢?下面是小编收集整理的《正比例》教学设计,欢迎阅读与收藏。

《正比例》教学设计1
教学内容
教科书第54页例3,练习十二5,6,7题。
教学目标
1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。
2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。
3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。
教学重、难点
运用正比例知识解决简单的实际问题。
教学准备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、复习引入
1.判断下面各题中的两种量是不是成正比例?为什么?
(1)飞机飞行的速度一定,飞行的时间和航程。
(2)梯形的上底和下底不变,梯形的面积和高。
(3)一个加数一定,和与另一个加数。
(4)如果y=3x,y和x。
2.揭示课题
教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。
二、合作交流,探索新知
1.用课件出示例3
教师:这幅图告诉我们一个什么事情?需要解决什么问题?
教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。
2.全班交流解答方法
指导学生思考出:
(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。
(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。
(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。
3.尝试用正比例知识解答
如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。
教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的`有关正比例的知识思考:
(1)题中有哪两种相关联的量?
(2)题中什么量是不变的?一定的?
(3)题中这两种相关联的量是什么关系?
引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。
随学生的回答,教师可同步板书:
教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?
引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。
教师:同学们会计算吗?把这个比例式计算出来。
学生解答。
教师:解答得对不对呢?你准备怎样验算?
学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
三、课堂活动
1.出示教科书第49页的例1图和补充条件
竹竿长(m)26…
影子长(m)39…
教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?
教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?
学生独立思考解答,讨论交流。
2.小结方法
教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)
(1)设所求问题为x。
(2)判断题中的两个相关联的量是否成正比例关系。
(3)列出比例式。
(4)解比例,验算,写答语。
四、练习应用
完成练习十二的5,6,7题。
五、课堂小结
这节课我们学习了什么知识?你有什么收获?
《正比例》教学设计2
【课题】:
人教版小学数学六年级(下)《正比例的好处》
【教材简解】:
正比例的好处是小学数学六年级(下)第三单元的教学资料。这部分知识是在学生具有比和比例的知识以及认识常见数量关系的基础上编排的,透过对两个数量持续商必须的变化,理解正比例的好处,初步渗透函数的思想。
【目标预设】:
1、知识潜力:使学生认识正比例的好处,理解、掌握成正比例量的变化规律及其特征。
2、过程与方法:能根据正比例的好处决定两种相关联的量成不成正比例关系。
3、情感态度与价值观:进一步培养学生观察、分析、综合等潜力;培养学生的抽象概括潜力和分析决定潜力。
【重点、难点】:
重点:使学生理解正比例的好处。
难点:引导学生透过观察、思考发现两种相关联的量的变化规律(即它们相对应的数的比值必须),从而概括出正比例关系的概念。
【设计理念】:
本节课的教学设计遵循以下几点设计理念:
1、抽象实际事例中的数量变化规律,构成正比例的概念。
例1是让学生初步感知“两种相关联的量”以及“成正比例的量”的含义。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是必须,能够说路程和时间成正比例,它们是成正比例的量,学生在那里首次感知了正比例关系。“试一试”是在另一组数量关系中继续感知正比例关系。使得学生在上面两个实例中感知了正比例的具体含义,然后教材再抽象概括出正比例的好处,这一环节是概念构成的重要环节,也是发展数学思考的极好机会。
2、用图像直观表达正比例关系。
例2是按照《课程标准》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。
第一步认识图像上的点,说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。
第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。
第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。
【设计思路】:
本课教学设计我从生活中一些常见的数量关系入手,复习一些数量之间的相互关系,打破了传统的正比例好处教学“复习 ——教学例1——教学例2——揭示概念——巩固练习”的教学模式,取而代之是让学生充分发挥学习的用心性,以及在学习过程中的合作探究潜力,进而总结出新知的尝试,本节课的教学依据“自学——反馈——探究——应用”这一课堂基本模式设计,结合新课程理念让学生在自主探究的氛围下学习,以求在理想的教学过程中产生理想的学习效果。
【教学过程】:
一、复习准备:
口答(课件演示)
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、新授教学:
(一)自学
课件出示以下两组自学材料:
1、一辆汽车行驶的时间和路程如下
时间(比)
1
2
3
4
5
6
……
路程(千米)
50
100
150
……
观察上表,填写表格并思考下列问题:
(1)表中有哪两种相关联的量?
(2)路程是怎样随着时间变化而变化的?
(3)相对应的路程和时间的比分别是什么?比值是多少?
2、一种圆珠笔,枝数和总价如下表
数量(枝)
1
2
3
4
5
6
……
总价(元)
1.6
3.2
4.8
……
观察上表,填写表格并思考下列问题:
(1)表中有哪两种相关联的量?
(2)总价是怎样随着数量变化而变化的?
(3)相对应的总价和数量的比分别是什么?比值是多少?
【设计意图:以学生常见的数量关系入手,以表格并附思考问题的形式出现,激起学生的认知冲突,激发学生的学习兴趣和强烈的求知欲,让学生边填边思,为学生用心参与后面的学习活动打下基础。】
(二)反馈:
师:在填表过程中,你发现了什么?每一组材料中的两种量有什么关系?它们的变化有规律吗?
1、学生自由说,小组内总结。(小组汇报,教师小结。)
小结:像这样表里的两种量,一个量变化,另一个量也随着它的变化而变化的,这两种量就是相关联的量。
【根据学生反馈板书】:
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是必须的
(说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“必须”)
2、概括正比例的.好处。
(1)师:刚才同学们透过填表、交流,明白了时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是必须的。总价和数量也是两种相关联的量,总价随着数量的变化而变化。数量扩大,总价随着扩大;数量缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和数量的比的比值总是必须的。这样我们就能够用数量关系式来表示:
【板书】:路程÷时间=速度(必须)总价÷数量=单价(必须)
问:谁来说说这两个数量关系式的意思?
(2)小结:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)必须,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们这天要学习的资料。
【板书课题】:成正比例的量
追问:决定两种相关联的量成不成正比例的关键是什么?(比值是不是必须)
(3)字母表达关系式。
问:如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?
【板书】:=k(必须)
(4)质疑。
师:根据正比例的好处以及表示正比例关系的式子想一想:构成正比例关系的两种量务必具备哪些条件?
【设计意图:透过学生自学两例“正比例”好处教学素材的反馈,让学生感悟其基本特征,从而由两个具体数学现象归纳抽象出数学结论,让学生经历这个过程,丰富他们的数学体验,实现“用教材教”而不是“教教材”这一新课程理念的转变。】
(三)探究:
1、课件出示表格
时间/时
1
2
3
4
5
6
……
路程/千米
80
160
240
320
400
480
……
根据表中列出的两种量,教师在黑板上分别画出横轴和纵轴。
问:你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
强调:每个点都就应表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎样看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
【设计意图:透过学生小组讨论、总结、汇报、师生交流后概括出的数学新知,再透过用图像直观表达正比例关系,进一步验证学习正比例关系的两个量用图像表示的状况,以帮忙学生构建立体的概念模型。师生的平等交流与探讨,激起情感共鸣,增强课堂的活力。】
(四)应用:
1、决定下面每题中两种量是不是成正比例,并说明理由。
(1)苹果的单价必须,购买苹果的数量和总价。
(2)长方形的长必须,它的宽的面积。
(3)每小时织布米数必须,织布总米数和时间。
(4)小新跳高的高度和他的身高。
学生独立思考,指名回答,课件演示核对。
2、完成练习十三第2题。
先让学生独立决定,再指名学生有条理地说明决定的理由。
3、完成练习十三第3题。
先让学生说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米?再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值必须时,它们才成正比例。
【设计意图:给学生练习的空间,加强学生对成正比例量的认识及正比例好处的理解,在对知识的实际应用中获得成功的体验,实现对新知的巩固。】
4、完成练习。
学生先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。(组织同桌讨论和交流)
三、课堂小结:
师:透过这节课的学习,你们都明白了什么?怎样决定两种量是否成正比例?
四、课堂延伸:
思考:正方形的边长和面积成正比例吗?
【设计意图:知识的拓展,能激活学生的思维,培养学生多角度思考问题的潜力,给学生更广的思维空间,充分发挥学生的潜能,使学生获得更好的发展。】
五、课外作业:
完成练习十三第1、4题。
六、板书设计:
正比例的好处
①两种相关联的量
②一种量扩大(或缩小)另一种量也扩大(或缩小)
③两种量中相对应的两个量的比的比值是必须的
路程÷时间=速度(必须)总价÷数量=单价(必须)
=k(必须)
《正比例》教学设计3
教学目标:
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
教学重点:
1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。教学课时:两课时
第一课时
教学过程:
一、课前预习
1、填好书中所有的表格
2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?
3、把不理解的内容用笔作重点记号,待课上质疑解答
二、展示与交流
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5、正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6、观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想:
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的`值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报
在老师的小结中感受并总结正比例关系的特征
一、反馈与检测
1、在一间布店的柜台上,有一张写着某种花布的米数和总价如下表:
数量(米) 7
总价(元)
9.519
28.5
47.5
66.5
1.表中有()和()两种量。
2.任意写出三个相对应的总价和数量的比,并算出它们的比值。 3、在这道题里,花布的()一定,()和()成正比例。 自己读题,并试着填一填.指名汇报.二、回答问题
1、根据下表中平行四连形的面积与高相对应的数据,判断当底是6厘米时,它们是不是成正比例,并说说理由。
平行四边形的面积
218 430
平行四边形的高
默读题目,有答案的举手.2、把表填完整,从中你发现了什么?应付的钱数与所买的邮票的枚数成正比例吗?买面值8角的邮票。打开书21页,在书上完成.3、判断下面各题中的两个量是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长
(4)火车行驶的时间和路程。
(5)火车的速度一定,行驶的时间和路程。
4、能力培养
把一定数量的钱放到银行存活期,存款的年限和所得的利息是不是成正比例?
5、找一找生活成正比例的
板书设计: 正比例 X=ky(k一定)
2.正比例和反比例
第二课时
教学目标:
使学生理解正比例的意义,会正确判断成正比例的量。教学重点难点:
重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。教学过程:
一、复习导入 1.复习引入。
用投影仪逐一出示下面的题目,让学生回答。
①已知路程和时间,怎样求速度?
板书: =速度。
②已知总价和数量,怎样求单价?
板书: =单价。
③已知工作总量和工作时间,怎样求工作效率? 板书: =工作效率。
2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。
二、新课讲授
1.教学例1
教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?
(2)铅笔的总价是怎样随着数量的变化而变化的?
(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:
①铅笔的总价随着数量变化,它们是两种相关联的量。②数量增加,总价也增加;数量降低,总价也减少。③铅笔的总价和数量的比值总是一定的,即单价一定。教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2.教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?
组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)
小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
三、归纳概括正比例关系。
①组织学生分小组讨论,上面两个例子有什么共同规律?
②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
学生说一说是怎么理解正比例关系的。要求学生把握三个要素:
第一:两种相关联的量。
第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。4.用字母表示正比例的关系。教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:
(一定)5.教师:想一想,生活中还有哪些成正比例的量?
学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;
四、课堂小结:
通过这节课的学习,你有什么收获?
五、课后作业
完成练习册中本课时的练习。完成教材第46页的“做一做”(1)~(3)。
六、板书设计
第1课时
正比例 =速度(一定)=单价(一定)=工作效率(一定)
(一定)
成正比例的量的三要素:
第一:两种相关联的量。
第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。
《正比例》教学设计4
教学要求:
1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
教学过程:
一、复习铺垫
1、说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2、引入新课
我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。
二、教学新课
1、教学例1。
出示例1。让学生计算,在课本上填表。
让学生观察表里两种量变化的数据,思考。
(1)表里有哪两种数量,这两种数量是怎样变化的?
(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?
引导学生进行讨论。
提问:这里比值50是什么数量?(谁能说出它的数量关系式?)
想一想,这个式子表示的'是什么意思?
2、教学例2
出示例2和想一想
要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。
学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?
比值1.6是什么数量,你能用数量关系式表示出来吗?
谁来说说这个式子表示的意思?
3、概括正比例的意义。
像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。
4、具体认识
(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?
例2里的两种量是不是成正比例的量?为什么?
(2)做练习八第1题。
5、教学例3
出示例3,让学生思考/
提问:怎样判断是不是成正比例?
请同学们看一看例3,书上怎样判断的,我们说得对不对。
强调:关键是列出关系式,看是不是比值一定。
三、巩固练习
1、做练一练第1题。
指名学生口答,说明理由。
2、做练一练第2题。
指名口答,并要求说明理由。
3、做练习八第2题(小黑板)
让学生把成正比例关系的先勾出来。
指名口答,选择几题让学生说一说怎样想的?
四、课堂小结
这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?
五、家庭作业。
《正比例》教学设计5
教学目标
知识与技能:理解正比例函数的意义;识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。过程与方法:通过现实生活中的具体事例引入正比例函数,提高学生运用数学知识解决实际问题的能力。情感态度与价值观:培养学生认真、细心、严谨的学习态度和学习习惯,同时渗透热爱大自然和生活的教育。
教学重点:识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。教学难点:理解正比例函数的意义。
教学设计
(一)创设情境,引入新知
20xx年7月12日,我国著名运动员刘翔在瑞士洛桑的田径110米栏的决赛中,以12.88秒的成绩打破了尘封13年的世界纪录,为我们中华民族争得了荣誉、
(1)刘翔大约每秒钟跑多少米呢?
刘翔大约每秒钟跑110÷12.88=8.54(米)、
(2)刘翔奔跑的路程s(单位:米)与奔跑时间t(单位:秒)之间有什么关系?
假设刘翔每秒奔跑的路程为8.54米,那么他奔跑的路程s(单位:米)就是其奔跑时间t(单位:秒)的函数,函数解析式为s= 8.54t
(0≤t ≤12.88)、
(3)在前5秒,刘翔跑了多少米?
刘翔在前5秒奔跑的路程,大约是t=5时函数s= 8.54t的.值,即s=8.54×5=42.7(米)、
教师活动:教师用多媒体呈现问题,学生活动:学生思考并解答。教师重点关注:学生能否顺利写出y与x的函数关系式。注意自变量的取值范围、
设计意图:
通过“刘翔”这一实际情境引入,使学生认识到现实生活和数学密不可分,向学生渗透热爱运动、努力拼搏的精神。同时发展学生从实际问题中提取有用的数学信息,建立数学模型的能力。
(二)观察思考、归纳概念
问题1:
下列问题中的变量对应规律可用怎样的函数表示?请指出函数解析式中的常数、自变量和自变量的函数、
(1)圆的周长l随半径r的大小变化而变化;
(2)铁的密度为7.8g/ cm3,铁块的质量m(单位:g)随它的体积v(单位:cm3)的大小变化而变化。
(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;
(4)冷冻一个0 ℃物体,使它每分下降2 ℃,物体的温度t(单位:℃)随冷冻时间t(单位:分)的变化而变化、
教师活动:教师多媒体呈现上述四个实际问题。学生活动:学生独立解答,解答后小组交流,出代表进行反馈。
设计意图:
通过指出常数、自变量、自变量的函数,对函数的概念进行回顾,从而为后续环节找正比例函数的共同点建立生长点。通过对实际问题讨论,使学生体验从具体到抽象的认识过程。
问题2:
教师活动:将上表中的前四个函数进行比较
思考:四个函数有什么共同特点?
学生活动:观察、思考。小组交流,分析、归纳共同特点,出代表反馈。教师要根据学生的具体表现,通过引导、点拨,使学生比较、观察得出共同点。教师根据学生的表述板书:
共同点:常数×自变量、
学生阅读教材正比例函数的概念
教师板书:
概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数、
教师追问:这里为什么强调k是常数,k≠0呢?正比例函数y=kx(k≠0)的结构特征
①k≠0
②x的次数是1
学生活动:学生交流、讨论,互相补充。设计意图:通过将前四个函数进行比较,是学生通过比较、观察、分析、概括出正比例函数的共同特点,使学生明白正比例函数的特征,从而归纳出正比例函数的概念。有效地克服了因没有对比直接观察使学生出现的不适性、盲目性。培养学生的观察、分析、归纳、概括等思维能力。
(三)练习运用,内化概念
判断下列函数是否为正比例函数?如果是,请指出比例系数。
教师活动:出示上题
学生活动:独立解答,教师巡视。教师根据学生反馈情况,引导学生根据“常数×自变量”归纳辨别正比例函数要注意的问题。
设计意图:
使学生结合实例深入理解概念的内涵,做到具体问题具体分析。
(四)、针对训练,提升能力
例1(1)若y=5x3m—2是正比例函数,m=。
(2)若y=(3m—2)x是正比例函数,则m的取值范围____。变式练习1、若y=(m—1)xm2是关于x的正比例函数,则m=
2、已知一个正比例函数的比例系数是—5,则它的解析式为:()
3、某学校准备添置一批篮球,已知所购篮球的总价y(元)与个数x(个)成正比例,当x=4(个)时,y=100(元)。
(1)求正比例函数关系式及自变量的取值范围;
(2)求当x=10(个)时,函数y的值;
(3)求当y=500(元)时,自变量x的值。
(五)、小结与作业:
小结:
本节课你有哪些收获?用你的语言说一说。
作业:
课后练习1题、2题。设计意图:
通过学生自己回顾、归纳本节内容,使学生对本节课的内容进行一次重新梳理,使学生能从整体上对本节内容有一个深刻地认识,使知识内化
板书设计
正比例函数
一、正比例函数概念:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,其中k叫做比例系数
《正比例》教学设计6
【教学内容】
正比例
【教学目标】
使学生理解正比例的意义,会正确判断成正比例的量。
【重点难点】
重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。
【教学准备】
投影仪。
【复习导入】
1.复习引入。
用投影仪逐一出示下面的题目,让学生回答。
①已知路程和时间,怎样求速度?
板书: =速度。
②已知总价和数量,怎样求单价?
板书: =单价。
③已知工作总量和工作时间,怎样求工作效率?
板书: =工作效率。
2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。
【新课讲授】
1. 教学例1。
教师用投影仪出示例1的图和表格。
学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?
(2)铅笔的总价是怎样随着数量的'变化而变化的?
(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:
①铅笔的总价随着数量变化,它们是两种相关联的量。
②数量增加,总价也增加;数量降低,总价也减少。
③铅笔的总价和数量的比值总是一定的,即单价一定。
教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2.教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?
组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。
教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
3.归纳概括正比例关系。
①组织学生分小组讨论,上面两个例子有什么共同规律?
②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
学生说一说是怎么理解正比例关系的。
要求学生把握三个要素:
第一:两种相关联的量。
第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
第三:两个量的比值一定。
4.用字母表示正比例的关系。
教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)
5.教师:想一想,生活中还有哪些成正比例的量?
学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;
【课堂作业】
完成教材第46页的“做一做”(1)~(3)。
答案:
(1) 。
(2)比值表示每小时行驶多少km。
(3)成正比例。理由:路程随着时间的变化而变化。
①时间增加,路程也增加,时间减少,路程也随着减少;②路程和时间的比值(速度)一定。
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
《正比例》教学设计7
赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节
课的个人看法:
一、注重数学和生活的联系,课堂灵活开放。
老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。
二、如花微笑,温暖学生。
这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。
三、用问题引领学生,突出学生的`主体地位。
“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。
《正比例》教学设计8
导学目标
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
导学重点:成正比例的量的特征及其判断方法。
导学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。
预习学案
填空
1、如果路程时间=()(一定),那么()和()成正比例。
2、如果油的重量花生仁重量=()(一定),那么()和()成正比例。
3、如果yx=k(一定),那么()和()成正比例。
导学案
学习例1
在相同的杯子里装上水,下表显示了水的高度和体积,把表填写完整。
高度24681012
体积50100150200250300
底面积
体积和高度有什么变化?观察他们的比值,你发现了什么?
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用下面的式子表示:
yx=k(一定)
想一想,生活中还有哪些成正比例的量?
小组讨论交流。
看书P40例2。
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
课堂检测
下列各题中的两种相关联的量是否成正比例关系,并说明理由。
1、正方体的棱长和体积
2、汽车每千米的'耗油量一定,耗油总量和所行千米数。
3、圆的周长和直径。
4、生产800个零件,已生产个数和剩余个数。
5、全班的人数一定,一、二组的人数和与其他组的人数和。
6、和一定,加数与另一个加数。
7、小苗牌2B铅笔的总价和购买枝数。
8、出油率一定,所榨出的油的重量和大豆的重量。
课后拓展
从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得12,二儿子分得13,小儿子分得19,但不能把牛杀掉或卖掉。三个儿子按照老人的要求怎么分也分不好。后来一位邻居顺利地把17头牛分完了,你知道三个儿子各分得多少头牛吗?
板书设计
成正比例的量
高度/cm24681012
体积/cm350100150200250300
底面积/cm2
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例表达式:yx=y(一定)
《正比例》教学设计9
教学目标
使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。2。培养学生概括能力和分析判断能力。3。培养学生用发展变化的观点来分析问题的能力。
教学重难点
重点:成正比例的量的特征及其断方法。
难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
教学过程
一、四顾旧知,
复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?
学生独立完成后
师提问:你们是怎样比较的?
生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?
生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。
(板书:正比例)
二、引导探索,学习新知
1、教学
例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。
师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?
学生自学并在组内交流。
全班交流。
(2)认识相关联的量。
明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。
学生计算后汇报:===…=3。5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)
(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:
3、列举并讨论成正比例的量。
(1)生活中还有哪些成正比例的量?
预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。
(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?两种量中相对应的两个数的比值一定,这是关键。
4、认识正比例图象。
(课件出示例1的表格及正比例图象)
(1)观察表格和图象,你发现了什么?
(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?无论怎样延长,得到的都是直线。
(3)从正比例图象中,你知道了什么?
生1:可以由一个量的值直接找到对应的另一个量的`值。
生2:可以直观地看到成正比例的量的变化情况。
(4)利用正比例图象解决问题。
不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?
生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。
设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。
三、课堂练习:
1、P46“做一做”
2、练习九第1、3~7题
《正比例》教学设计10
教学要求:
使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
教学过程:
提出本课复习题
基本概念的复习
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的两种量成反比例关系?
成正比例关系的'量与成反比例关系的量有什么异同点?
应用练习
完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。
巩固练习
完成教材99页第6~7题。
全课总结(略)
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)
练习巩固
完成教材十九页第1~4题。
全课总结(略)
《正比例》教学设计11
教学目标
1、知识与技能
①理解正比例函数的概念及正比例函数图象特征。
②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。
2、过程与方法
①通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。
②经历运用图形描述函数的过程,初步建立数形结合,经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。
3、情感态度与价值观
①结合描点作图培养学生认真细心严谨的学习态度和习惯。
②培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。
教学重点:
探索正比例函数图形的形状,会画正比例函数图象。
教学难点:
正比例函数解析式的理解教学方法:探索归纳,启发式讲练结合
教学准备:
多媒体课件
教学过程
一、提出问题,创设情境,激发学生的学习兴趣情境
1、(1)你知道候鸟吗?
(2)它们在每年的迁徙中能飞行多远?
(3)燕鸥的飞行路程与时间之间有什么样的数量关系?教师用课件展示问题。让学生观察图片中的燕鸥,然后思考并解答课本上的问题。学生自主解决三个问题。教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程和时间规律进行了刻画。
【设计意图】从具体情境入手,让学生从简单的实例中不断抽象出建立数学模型、数学关系的方法。
二、出示本节课的学习目标
①理解正比例函数的概念及正比例函数图象特征。
②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。
教师用课件展示学习目标,学生齐声朗读,记忆。
【设计意图】首先让学生了解本节课的学习任务,有目的的进行本节课的学习。
三、自学质疑:
自学课本86——87页,并尝试完成下列问题
1、写出下列问题中的函数表达式
(1)圆的周长|随半径r的大小变化而变化
(2)汽车在公路上以每小时100千米的速度行驶,怎样表示它走过的路程S(千米)随行驶时间t(小时)变化的关系?
(3)每个练习本的厚度为,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化
(4)冷冻一个0度的物体,使它每分下降2度,物体的温度T(单位:度)随冷冻时间t(单位:分)的变化而变化
2、这些函数有什么共同点?这样的函数我们把它们称为正比例函数。由上得到的启发,你能试着给正比例函数下个定义吗?学生先自主探究,后分组讨论,然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。
【设计意图】通过这些实际问题使学生进一步加深对函数概念的理解,也为导出正比例函数概念做好铺垫。
教师引导学生观察分析上面的四个表达式的共性:都是常数与自变量乘积的形式。教师口述并板书正比例函数的概念。
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k是常数,k≠0?
上述问题中各正比例函数的比例系数分别是什么?(由学生一一说出)
做一做:下面的函数是不是正比例函数?y=3x y=2/x y=x/2 s=πr2
通过上面的例子,师生共同总结正比例函数须满足下面两个条件:
1、比例系数不能为0
2、自变量X的次数是一次的。
表示下列问题中的y与x的函数关系,并指出哪些是正比例函数。
(1)正方形的边长为xcm,周长为ycm;
(2)某人一年内的月平均收入为x元,他这年的总收入为y元;
(3)一个长方体的长为2cm,宽为,高为xcm,体积为ycm3
【设计意图】通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点。
我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?自学课本87——89页,并尝试回答下列问题:[活动]
1、各小组合作回顾函数图象的画法,画出下列函数的'图象
(1)y=2x(2)y=—2x
【设计意图】:通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。
教师活动:引导学生正确画图、积极探索、总结规律、准确表述。学生活动:利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。活动过程与结论:
1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6画出图象如图P1242、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6画出图象如图P112
问:①观察两个函数图象,能得到那些信息?教师指导:观察函数图象从以下几个方面进行:
(1)自变量
(2)函数值
(3)升降性
(4)特殊点
(5)过了那几个象限
(6)图象的形状
②总结正比例函数图象的性质
3、两个图象的共同点:都是经过原点的直线。不同点:函数y=2x的图象从左向右呈状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;y=—2x图象经过第二、四象限,从左向右呈状态,即随x增大y反而减小
三、巩固练习:
1、判断下列函数哪些是正比例函数
(1)y=2x
(2)y=kx(k≠0)
(3)y=—1/3x(4)y=1/2x+2
(5)y=3x2
(6)y=—3x2
2、教材练习题
比较两个函数图象可以看出:两个图象都是经过原点的直线。函数的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数的图象从左向右下降,经过二、四象限,即随x增大y反而减小。
四、总结归纳正比例函数解析式与图象特征之间的规律:
正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们可称它为直线y=kx。当k>0时,直线y=kx经过一、三象限,从左向右上升,即y随x的增大而增大;当k二、四象限,从左向右下降,即y随x的增大而减小。
五、巩固深化
1、画正比例函数时,怎样画最简便?为什么?教师活动:引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。学生活动:在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。
2、活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象。画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。
随堂练习:用你认为最简单的方法画出下列函数的图像:(1)y=3/2x,(2)y=—3x
六、总结归纳,布置作业
1、在本节课中,我们经历了怎样的过程,有怎样的收获?
2、你还有什么困惑?
作业:P98习题19.2─1、2题。
教学设计说明:
本节教学设计以“自学质疑,教师指导阅读,咬文嚼字;合作释疑,查漏补缺;展示评价,培养学生的概括能力;巩固深化,细心读题,学生说题,培养学生的语言表达能力”四个步骤强化了学生的阅读意识,提高了学生的阅读兴趣,培养了学生的阅读能力。较好的完成了本节课的学习目标。
《正比例》教学设计12
教学资料:
北师大版小学数学六年级下册《正比例》
教学目标:
1、结合丰富的事例,认识正比例。
2、掌握成正比例变化的量的变化规律及其特征。
3、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:
认识正比例的好处和怎样决定两个变化的量是不是成正比例。
教学难点:
决定两个变化的量是不是成正比例。
教具准备:
课件
教学过程:
一、导入新课:
出示:路程、单价、正方形的边长……
根据上面的某个量,你能想到些量?为什么?
在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。
二、新课探究:
(一)、活动一:初步感受正比例关系。
1、课件出示正方形周长与边长、面积与边长的变化状况:
(1)请把表格填写完整。
(2)观察表格,你能发现什么规律?
(群众填表后,独立观察,发现规律,
2、组织学生交流发现的规律,引导学生比较两个规律的异同点。
3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。
所以两个相互依靠的变量之间的关系是不一样的。
(二)、活动二:结合实例体会正比例的好处:
1、课件出示:
(1)将表格填完整。
(2)从表格中你能发现什么规律?
(以小组为单位,选取一个情境进行研究。)
2、交流汇报:
(三)、活动三:揭示正比例的好处。
1、这2规律有什么共同点?
教师随着学生的回答板书:
都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。
2、教师揭示正比例的含义。
像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)
3、结合实例说明:
表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。
学生说一说表二的两个量。
4、用字母表示出正比例关系。
如果我们用X、Y表示两个变化的量,用K表示它们的比值,成正比例的两个变量之间的关系能够怎样用式子表示?
(四)、活动四:决定两个量是不是成正比例的量。
1、出示活动一中的表格:
正方形的周长与边长是不是成正比例的量?正方形的面积与边长是不是成正比例的量?为什么?
学生自主决定后交流。
2、看来决定两个量是否成正比例务必具备几个条件?
强调:只有具备两个条件,我们才能说这两个量成正比例。
三、课堂练习:
1、根据下表中的数据,决定表中的两个量是不是成正比例:
平行四边形的面积/cm2
6
12
18
24
30
平行四边形的高/cm
1
2
3
4
5
买邮票的枚数/枚
1
2
3
4
5
所付的钱数/元
0.8
1.6
2.4
3.2
4.0
2、小明和爸爸的年龄变化状况如下:
小明的年龄/岁
6
7
8
9
10
11
爸爸的年龄/岁
32
33
(1)把表格填写完整。
(2)父子的年龄成正比例吗?为什么?
3、决定下面各题中的两个量是否成正比例,并说明理由。
(1)每袋大米的质量必须,大米的`总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长和长。
(4)圆的周长和直径。
(5)圆的面积和半径。
四、课堂总结:
透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。
板书设计:
正比例
一个量随着另一个量的变化而变化
两个量的比值是不变
x=ky(k必须)
教学反思:
1.课堂流程的设计,延展了探究空间。
本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。
2.数学材料的呈现,丰富了体验途径。
为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。
3.学习方式的选取,促进了深度感悟。
教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。
《正比例》教学设计13
教学内容:
九年义务教育六年制小学数学第十二册P62——63
教学目标:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:认识正比例的意义
教学难点:掌握成正比例量的变化规律及其特征
设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
一、复习铺垫激情促思
1、说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充
二、初步感知探究规律1、出示例1的表格(略)
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)
(2)引导学生观察表中数据,寻找两种量的.变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)
(3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,
(板书:路程和时间成正比例)
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书
3、抽象表达正比例的意义
引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?
根据学生的回答,板书:=k(一定)
揭示板书课题。
先观察思考,再同桌说说
大组讨论、交流
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系
学生独立填表
完整说说铅笔的总价和数量成什么关系
学生概括
三、巩固应用深化规律
1、练一练
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题
先独立判断,再有条理地说明判断的理由。
4、练习十三第3题
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?
讨论、交流
独立完成,集体评讲
说明判断的理由
说一说,画一画
填一填,议一议
讨论
四、总结回顾评价反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?
《正比例》教学设计14
教学内容:正比例
教材分析:
正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否成正比例。
学情分析:
学生在学习乘法时,已经知道一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个内容是有个初步的接触。在这个内容的学习中,学生最容易掌握的是根据表格中的具体数据判断两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述判断两个量是否成正比例,特别是学生对学过的数量关系不熟悉时就更难了。
教学目标:
1.结合丰富的事例,认识正比例,理解正比例的意义,并初步感受生活中存在很多成正比例的量。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学重点:
1、结合丰富的事例,认识正比例,理解正比例的意义。
2、能根据正比例的意义,判断两个相关联的`量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具:
课件
教学过程:
一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(二)情境二:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
(三)情境三:
1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:这两个表格中的变化情况与上两题的变化规律相同吗?
说说从数据中发现了什么?
3、 小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
(四)归纳正比例的意义
1. 时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
2. 购买苹果应付的钱数与质量有什么关系?
3. 正方形的周长与边长有什么关系?
4. 观察思考成正比例的量有什么特征?
一个量变化,另一个量也随着变化,并且这两个量的比值相同。
5. 小结
两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)一定,这两种量就是成正比例的量,它们的关系就是正比例关系。
二、巩固练习
1. 想一想:
正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁 | 6 | 7 | 8 | 9 | 10 | 11 |
爸爸的年龄/岁 | 32 | 33 |
(1) 把表填写完整。
(2) 父子的年龄成正比例吗?为什么?
(3) 爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报
三、全课总结:说说你在这节课中学到了什么知识?有什么不明白的地方?
板书设计:
正比例
路程÷时间=速度(一定)
总价÷数量=单价(一定)
正方形的周长÷边长=4(一定)
两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)一定,这两种量就成正比例。
《正比例》教学设计15
教学目标:
1、初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。
教学重点:
会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点:
会根据正比例的意义判断两种相关联的量是不是成正比例。
预习指导:
一、自学教材。
阅读教材第62~63页。
二、检查学习。
1、怎样两个量成正比例?
2、完成"试一试"。
教学准备:
课件和口算题。
教学过程:
一、导入
谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。
二、教学例1 1、课件出示例1的表
(1)看一看,表中有哪两种量?这两种量的数值是怎样变化的?
(2)表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。
2、那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。
3、我们可以写出这么几组路程和对应时间的比。
(1)发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?
(2)这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律
(3)同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
课件出示:路程和时间成正比例。
(4)现在你能完整地说一说表中路程和时间成什么关系吗?
4、刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目。
(1)课件出示"试一试"
(2)请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?
课件出示表中的数据。
(3)从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。
集体交流:
(4)我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?
(5)再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。
小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的`总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。
(6)你能完整地这样说给你的同桌听一听吗?
(7)同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?
课件出示课题。
(8)回顾一下,我们是根据什么来判断两种数量能成正比例的?
指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。
5、完成"练一练"
(1)请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?
(2)生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。
小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?
三、练习
1、完成练习十三第1题。
请大家继续看课本66页第1题
2、完成练习十三第2题
(1)继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?
(2)同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。
3、完成练习十三第3题(课件出示题目)
(1)课件出示放大后的三个正方形、
(2)大家看一看,你是这样画的吗?
(3)接着请同学们对照表格计算出放大后每个正方形的周长和面积。
校对学生做的情况。
(4)请大家根据表中的数据讨论下面两个问题。
①正方形的周长与边长成正比例吗?为什么?
②正方形的面积与边长成正比例吗?为什么?
四、总结。
通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。
板书设计:
正比例的意义
路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
【《正比例》教学设计】相关文章:
《正比例》教学设计03-02
《正比例》教学设计10-06
正比例教学设计09-04
(精华)正比例教学设计05-19
(必备)正比例教学设计02-22
[优秀]《正比例》教学设计10-06
正比例教学设计[荐]05-19
《成正比例的量》的教学设计09-06
(经典)正比例教学设计15篇05-19
正比例教学设计15篇09-11
