(必备)三角形的内角和的教学设计
在教学工作者实际的教学活动中,时常要开展教学设计的准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那要怎么写好教学设计呢?下面是小编为大家收集的三角形的内角和的教学设计,欢迎阅读,希望大家能够喜欢。

三角形的内角和的教学设计 篇1
1. 清晰之问引其疑
提问对学生来说是引发思维的出发点,因此提问应是在学生对某些数学现象、某些数学研究有了一定的感知和认识的基础上进行的。教师提问学生必须有明确的提问目的和清晰的表达,方能促使学生对新知产生疑惑,激发兴趣,形成体验。
教学片段A:(七下《认识三角形》第一课时)
(上课铃声响后,师生行礼毕)
师:同学们,今天我们一起来学习新的知识,请同学们首先回顾下以前所学过的几何图形有哪些?
生1:学过了三角形、正方形、长方形……
生2:还有圆、四边形、平行四边形、五边形……
师:那么大家想一想,我们学过的三角形如何能构成?
(沉默稍许,一生举手)
生:三角形两边之和大于第三边(表情不自信,低头小声!)
师(一怔):噢!这说明了这位同学预习了新课内容,但我问的不是这个意思,我问的是如何构成三角形?(生有议论,但无人举手)
师(略急):大家请看黑板上的图形(指着三角形三边)这是什么?
生(齐声):边!
……
师:那么三个内角如何表示呢?
生:∠A,∠B,∠C
师:回答正确!有没有同学会用符号记作三角形呢?
一生举手上黑板书写 ABC
师:字母有没有顺序要求呢?生(齐声):没有!
师:请同学们打开补充练习完成第7页第4题。
生做题,师巡视指导……
此片段是苏科版七(下)第七章《认识三角形》第一课时新课引入部分。以提问形式进行,该师主要提问了13余次,不能说教师没有组织教学的提问意识,但却有不少设计可以再推敲!概括起来,其提问主要存在的缺憾有两点:“问无据,问不明”!
有效的提问必须从学生的实际出发,注重学生的年龄特征、知识水平和接受能力。其设计的目的立足于教材内容和学生的“最近发展区”,让学生能通过努力思考建构地认识新知!如果没有这样的问题设计的依据,随心所欲,信口开河,那么我们所设计的问题只是为了问而问,意义甚小!片段中教师开始提问学生回顾小学的旧知意图似乎是在通过回顾图形引入到三角形知识的认识,但由于学生的理解角度和学过的图形较多,回答不免散而耗时,不能及时切入新课,其问题与本节内容相去较远,有“敲边鼓”之嫌!这样的问题设计过多便会冲淡了学生的学习之趣!同样,问题中教师提问学生“三角形边还可以怎么表示?能不能用小写字母表示?”的设计笔者认为学生无人敢答不是无人不知,而是学生的'最近发展区带来的对新知的不自信!教师可以这样设计:“三角形的边是线段,线段除了用大写字母可以表示,还可以怎么表示?那么是不是随意的用小写字母表示呢?大家通过预习能不能找到用小写字母表示的特征?”这样的设计虽不能说视为最佳,但其一可以引导学生认识三角形的边是线段,线段可以用小写的字母表示,另则可以促使学生自主去找到用小写字母表示边的特征!符合新课程中要求学生形成学习数学体验的要求!所以精巧之问须有精心准备!明确而有依有据的问题设计要求教师课前必须把握教材,摸清学生知识的基础,把问题设计在学生已有的知识基础上,这样才能不做无凭无据之问!
2. 多变之问激其趣
新的知识点形成之后,它还可以发散、深化,使知识得以迁移、发展,从而对学生问题的设计不单一,不固定是激发学生学习兴趣的重要方法!
多变之问在于(1) 变形式;(2) 多迁移;(3) 悬而不释
片段B:(《三角形内角和》)
师:同学们!我们小学学过了三角形的相关知识,请同学们根据你们的所学完成下面的练习!
(师生共同完成练习)
师:同学们完成的很好!那么有没有同学能告诉大家你计算角度的依据是什么?
生:我是根据三角形内角和为360度进行计算的!
师;回答的很好,这个知识我们小学就知道了,那么今天我们就一起来研究为什么三角形的内角和为360度呢?请同学们分组讨论!
(生分组热烈讨论,师参与并指导!)
师:同学们讨论的非常积极!请同学们以小组为单位发表你们讨论的结果!
生:我们小组是通过动手操作说明三角形内角和为360度的。
(生上讲台示范)
师:他们小组将一个三角形三个内角撕下拼成平角说明内角和为360度,是否正确?
生:正确!
师:通过撕纸说明是一种直观的感受,大家再想一想有没有其他方法说明呢?
生:用平行线的性质来说明!
师(没有评价):请同学们再思考看看!除了这样的想法有么有其他想法。
生:我还有一个想法!也是利用平行线性质来说明!
师:因为课堂时间有限,大家讨论很积极,思路也很多,刚才两位同学展示的完全正确,他们都是借助了平行线的性质进行了说明!当然,有些其他做法的同学,我们课后再继续讨论!
这个教学片段中教师的问题设计并不是很多,但总体来看还是有可取之处的!这样的设计紧紧围绕了问题设置的目的而展开,才开始的三角形内角和知识的再认识的问题设计不单一和老套,没有“三角形内角和为多少的”开门见山式!而是以习题形式取代了对三角形内角和知识的回顾,让学生再体验中去感受以前所学过的知识点,既复习了旧知,也将知识进行了初步应用。后面几个问题的设计则是将学生的思维进行了迁移,拓展了学生的思路,其中有些地方教师并不给予当即的评价,悬而不释!目的在于引导更多的学生参与进来,促使更多的学生有信心进行思考回答!当然,寻找知识的迁移、发展点,让我们的问题问中有变应注意其实效性和可行性,应从知识的本身出发做适当扩展,切不可以因变而随意迁移知识点,加深知识难度!
3. 有别之问树其志
所谓“有别之问”即是我们的问题设计应该考虑学生的不同层次,应考虑不同学生的知识水平和接受能力!对问题的设计应有铺垫,由浅入深,对基础薄弱的学生所提出的问题 要求过低或过高都不能激发学生的创新思维和积极性。因而我们设计问题时要注意合理行,层次性,注重面向全体学生,按班级中上等学生的水平来设计,同时也要顾及学生的个性特点和个体差异,以发挥每个学生的学习兴趣!
片段C:(平行线判断的说明)
如图,AD//BC,∠A=∠CAB与DC平行吗?为什么?
这个问题原题目对于多数同学而言有些难度!因而就需要教师在课前作好问题的设计!比如可将此题的问题设计成如下的问题串:
(1) 根据AD//BC,同学们能判断哪些角相等?
(2) 结合∠A=∠C,大家还能得到什么结论?
(3) 如果∠B=∠C,你能到哪两条线段平行?
通过这样的问题串的设计并针对问题的层次有区别的进行提问,步步引导学生对题目进行分析!这样,多数学生能从自己对问题的理解出发,一个问题接一个问题去思考!调动了学生学习的兴趣!
三角形的内角和的教学设计 篇2
教学内容 :小学数学教材第八册P137—P138及练习三十一的第13—15题。
教学目的:
1.通过教学向学生渗透“认识来源于实践,服务于实践”的观点。
2.使学生通过学习“三角形内角和”能解决一些实际问题。
3.进一步培养学生动手操作的能力。
教学重点: 对三角形内角和知识的实际运用。
教学难点:通过动手操作验证三角形的内角和是180°
教 法:实验法,演示法
教具准备:三种类型的三角形若干个。
学具准备:三角形纸片若干、多媒体课件。
教学过程:
一、课前一练
师:前几节课我们一直在研究三角形,有关三角形,你掌握了哪些知识呢?
二、猜角设疑,揭示课题
师:看来同学们对三角形已经非常熟悉了,下面我们来做个游戏,这个游戏叫“猜角”。请同学们拿起桌子上量好角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。相信吗?下面我们来试一试。
(师生猜角活动)
师: 你们想不想知道老师有什么法宝,能这么快说出第三个角的度数?通过这节数学课的学习,你就可以揭开这个奥秘了。(板书“三角形的内角和”)
三、自主探索,合作交流
师:看到这个题目,你想知道些什么呢?
生: 什么是三角形的内角?
生:三角形的内角和是多少度?
生:什么叫三角形的内角和?
生:我们学习三角形的内角和有什么用处?
通过这节课的学习,我们就要知道,三角形的内角和是多少度以及它在实际生活中的应用。
1、理解“内角”
师:我们先来看第一个问题:什么是三角形的内角?谁想说说自己的想法?
生:“内”是里的意思,“内角”就是三角形里面的角。
师:你知道三角形有几个内角吗?(三个)
2、理解“内角和”
师:那我们再来想一想三角形的内角和指的是什么呢?
生:(边指边说)“内角和”就是将三角形里面的角相加的度数。
生:我还有补充。三角形的内角和是三个角相加的度数。
师:说的真好,为了方便,我们将三角形的`每个内角编上序号1、2、3,我们叫它∠1,∠2,∠3,∠1,∠2,∠3的度数和,就是这个三角形的内角和。(课件出示)
3、探究新知。
①分工
师:研究三角形的内角和,就要对每一类的三角形进行研究。如果咱们分工研究,你们组愿意研究哪一类的三角形呢?(小组进行选择)先别着急,每位同学想想,你准备采用什么方法来研究三角形的内角和?把你的想法简单的在小组内说一说。我发现有的小组已经胸有成竹了。下面请各小组组长来领取你们要研究的三角形和需要的材料。为了研究方便,请把你研究的三角形的内角也编上编号,如果遇到小组解决不了的问题,别忘了老师在你身边。
②小组合作探究内角和。
③学生汇报交流。
师:我发现大部分小组已完成了研究,哪个小组愿意派代表到前面汇报你们研究的方法和结果。
(小组汇报)
④得出结论。
师:谁能用一句话来概括一下这几个同学的观点。
(三角形的内角和等于180°)
师小结:我们研究了锐角三角形、直角三角形,钝角三角形,其实也就包括了所以的三角形,从而可以得出结论,三角形的内角和都等于180°(板书)
4、学习例题。
师:根据这一规律,如果知道三角形中两个角的度数,就能求出第三个角的度数。
课件出示例题:在三角形中,已知∠1=78°,∠2=44°,求∠3的度数。
学生独立解答,集体订正,注意纠正学生的书写格式。
四、应用深化
1、变式练习
师:三角形兄弟听说咱们发现了它们的内角和是180°,非常高兴。瞧,它们也特地赶来了,请听听它们在说些什么?(课件出示)
你会解决它们提出的问题吗?
2、练习三十一的第15题。
师:同学们放过风筝吗?你见过的风筝都是什么形状的?
这些形状都是美丽的对称图形,看!小红的爸爸给小红买了什么样的风筝?(课件出示)你是怎么想的?
3、抢答:
师:原来生活中也会应用到三角形内角和的知识,同学们回忆一下,刚才老师猜角的秘密是什么?(三角形内角和是180°)
师:如果让你来猜你会猜吗?下面咱们以小组为单位进行抢答,规则是:先举牌者先回答,答对的小组可获得一面小旗,最后小旗多的小组是比赛的冠军。你们做好准备了吗?
(进行猜角游戏)
已知∠1,∠2,∠3是三角形的三个内角。
(1)∠1=38° ∠2=49°求∠3
(2)∠2=65° ∠3=73°求∠1
已知∠1和∠2是直角三角形中的两个锐角
(1)∠1=50°求∠2
(2)∠2=48°求∠1
师:现在每小组都得到了红旗,但最后获胜者是第几小组,让我们用掌声向他们表示祝贺。
4、拓展练习
师:同学们,我们已经知道了三角形有三个内角,你知道长方形、正方形各有几个内角吗?它们的内角和又是多少度呢?那么任意四边形的内角和又是多少度呢?任意五边形、六边形、七边形……内角和又是多少呢?有兴趣的同学可以研究一下。
五、反思回顾
师:通过本节课的学习,你有什么收获?
师:同学们通过探索和合作交流发现了三角形的内角和是180°,充分发挥了你们的聪明才智,你们真不简单!希望你们在今后的学习中继续探索,掌握更多的本领!
三角形的内角和的教学设计 篇3
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
教学过程:
(一)创设情境,提出问题。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,今天老师还给大家带来了一个老朋友,请看,是什么?
生:三角形!
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
(学生叙述到部分主要内容即可)
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
师:有谁知道这个三角形三个内角的度数?
(FLASH:生说完后师点击出第二个三角形,边说边点出度数)
[U1]试一试,看谁算得快。
师:谁来说说自己的计算过程?
[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是180度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生:……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
[U3]
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的.过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形的内角和的教学设计 篇4
一、教学目标
1.知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.过程与方法目标: 经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。
3.情感态度价值观目标: 在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
二、教学重难点
重点:掌握三角形内角和定理。
难点:理解三角形内角和定理推理的过程。
三、教学过程
尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是三角形内角和,下面我将正式开始我的试讲。
上课,同学们好,请坐。
【导入】
同学们,上课之前呢我们先来看一下大屏幕,老师给大家准备了几张照片我们来看一下,在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
那同学们,大家同不同意它的说法呀,老师看到同学们都很疑惑的样子,没关系,今天这位节课我们就一起来研究一下这个问题,学习一下——三角形的内角和。
【新授】
活动一:
那同学们,接下来啊我们拿出尺字,画出几个三角形,然后测量并计算一下,三角形3个内角的和各是多少度呢?给大家三分钟时间同桌之间相互交流一下这个问题。
老师看到同学们都安静了下来,第三排这位同学,你来说一说你们两个人的结论。哦,他说呀他们发现他们两人画出的直角三角形内角和都是180度,你们的思路非常清晰,请坐!后边同学有不同意见,你来说,他说呀他们两人画出的锐角三角形也是180度。也是正确的,请坐!
活动二:
那同学们,是不是所有的三角形的内角和都是180°呢?如何进行验证呢?
那接下来5分钟我们前后排4个人一小组进行讨论,待会啊老师会找同学提问。
老师看到同学们都很迷茫,给大家一点小提示,我们可以用剪拼的形式来验证一下。
好时间到,哪位同学来告诉一下老师,你们的讨论结果呢。你们小组讨论的最激烈,你来告诉一下老师,他说呀他们小组是将三种不同类型的三角形的三个角剪下来,再拼一拼,发现都拼成一个了平角,你们的方法非常独特,请坐!那大家的方法和它们的方法是一样的吗?
看来同学们的思路都非常的清晰,那同学们,由此我们就验证得出了,三角形的内角和就是180度。
观察一下黑板上这些内容,以上就是本节课所要学习的三角形内角和。
【巩固练习】
通过本节课的学习,相信大家对平行四边形有了更深的`了解。我们看向黑板,接下来给大家两分钟时间来做一下这道题巩固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度数。课代表来黑板上板书一下。老师看到同学们笔都放下了,我们一起来看一下黑板上同学的答案,∠3=15°,同学们的答案和他的是一样的吗,看来同学们对本节课知识的掌握都已经非常扎实了。
【课堂小结】
不知不觉本节课马上就接近了尾声,哪位同学来说一下本节课你都有哪些收获呢?(停顿2秒)第二排手举得最高这位同学你来说一下,哦,他说啊,通过本节课的学习他掌握了三角形当中一个新的特点,三角形的内角和是180度,总结的非常全面见,请坐!
【作业布置】
接下来老师来给大家布置个小任务,回家之后仔细观察一下家中的物体,看一看那些物品是三角形的,动手测量一下内角和,看一看是否满足180度,下节课一起来交流讨论一下,今天这节课就上到这里,同学们再见。
三角形的内角和的教学设计 篇5
教学要求
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
教学重点
三角形的内角和是180°的规律。
教学难点
使学生理解三角形的内角和是180°这一规律。
教学用具
每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、出示预习提纲
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?
3、如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、展示汇报交流
1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4、指名学生汇报各组度量和计算的结果。你有什么发现?
5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6、刚才我们计算三角形的内角和都是先测量每个角的`度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。
12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13、出示教材85页做一做。让学生试做。
14、指名汇报怎样列式计算的。两种方法均可。
∠2=180°—140°—25°=15°
∠2=180°(140°+25°)=15°
课后反思:
对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。
【三角形的内角和的教学设计】相关文章:
《三角形的内角和》教学设计12-22
《三角形内角和》教学设计10-01
三角形的内角和教学设计07-13
三角形内角和教学设计07-25
《三角形内角和》的教学设计10-27
三角形的内角和的教学设计09-01
【热】三角形内角和教学设计11-13
《三角形内角和》教学设计(精)10-01
三角形内角和教学设计优秀09-22
三角形内角和教学设计(优选)11-13
