小数的意义教学设计
作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计要怎么写呢?以下是小编为大家收集的小数的意义教学设计,欢迎大家分享。

小数的意义教学设计1
教材来源:
义务教育教科书,人民教育出版社xxxx年版
教学内容来源:
小学四年级数学(下册)第四单元《小数的意义和性质》
教学主题:
《小数的意义》
课时:
第一课时
授课对象:
四年级学生
目标确定的依据:
1.课程标准相关要求
进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。
2.教材分析
《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的.初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。
3.学情分析
本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。
学习目标:
1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。
评价设计:
1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。
2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。
教学重点:
理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。
教学难点:
理解一位、两位、三位小数的意义。
教学准备:
米尺、课件。
小数的意义教学设计2
教材简析:
教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较完整的小数概念以及记数方法。例1从学生已有的经验切入,先教学两位小数的读法,再感受两位小数的含义,学生体会两位小数的意义不是很轻松的。而小数部分的读法与整数部分不同,又是他们初学时感到不习惯的。从有利于教学出发,例题先讲两位小数的读法,再让学生感受到两位小数的含义。例2通过数形结合,建立小数的概念。
教学目标:
1、通过学习使学生在分数的基础上认识小数,知道什么是小数,小数的意义,学会分数、小数的互化。
2、培养学生的理解空间想象能力。
3、训练学生思维的灵活性。
教学重点与难点:
小数的意义及小数与分数的联系。
教学准备:
多媒体课件
教学过程:
一、复习
用分数表示下面的数。
1角=()元1分米=()米
2角=()元1厘米=()米
1分=()元1毫米=()米
二、教学例1:
1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。
指名回答问题。注意学生回答问题时要完整。
橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习簿的单价0.48元是4角8分或48分。
(联系学生的已有经验,既使学生消除对这三个小数的陌生感,又为下面体会小数的意义埋下伏笔。)
2、教学小数的读法:
你能读出下面的小数吗?鼓励学生大胆尝试。
0.05读作:零点零五0.48读作:零点四八
引导学生总结读整数部分为0的小数的方法:
从左往右依次读出各位上的数。
3、初步感受两位小数的含义。
想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?
小组讨论交流。
汇报:0.3元是1元的十分之三。
(学生根据三年级的知识,完全可以回答出第一个问题。)
0.05元是1元的百分之五。提问:为什么:
(根据学生的回答情况,可以作如下的引导。)
思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的;0.05元是5分,是5个,也就是1元的.。
根据上面的思路,让学生说明0.48元是1元的。
学生回答:1元=100分,1元平均分成100份,1份是1分,1分就是1元的;0.48元是48分,是48个,也就是1元的。
观察板书:
你发现了什么?
引导学生看到0.05和0.48都是两位小数,都表示百分之几。
4、“试一试”
A、理解:1厘米是米,米可以写成0.01米。
指名理解1厘米为什么是米。
(1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的,就是米。)
B、用米为单位的分数和小数分别表示4厘米与9厘米。
学生回答并说名理由。
C、观察板书:
这三个分数都是什么样的分数?(百分之几的分数)
这三个小数呢?(两位小数)
我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)
三、数形结合,建立小数的概念。
1、出示例2:
把什么看作“1”?(正方形)
看着图形将和写成小数。学生自主填空后回答。
提问:0.1表示什么?0.01又表示什么?
2、试一试:
在下面每个正方形中涂上颜色,分别表示、和,并把它们写成小数,填在括号里。
学生自主练习,进一步体验小数的意义。
3、思考:
观察前面出现的小数与分数的关系,你有什么发现?和小组内的同学交流一下自己的观点。
结论:分母是10、100、......的分数可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几......
4、想一想:
写成小数是多少?呢?你能写一写、读一读吗?
A、学生回答,教师板书:
你是怎样思考的?
B、进一步体会读法:0.001读作:零点零零一
0.029读作:零点零二九
强调:小数部分的零要一个一个的读,不能只读一个零。
C、我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那么你知道四位小数表示什么吗?
学生回答。
5、练一练:
学生自主填空,交流时注意让学生根据小数的意义进行说明。
四、巩固练习:
练习五的1-5题。
练习时让学生自主练习,指名回答时要培养学生完整回答并应用自己学过的知识阐明观点的习惯与能力。
注意:练习的第3题,出现了整数部分不是0的小数,读写应该不会有困难,但是在用小数的意义进行说明时,对于一部分学生可能会造成困难,虽然题目没有要求学生进行意义说明,但是在教学中还是应该有初步的渗透。
家庭作业:
1、自己写几个小数,读出来,并说说它们各表示什么。
2、回顾学习过的十进制记数法,预习P32页例3。
板书设计:
小数的意义教学设计3
教学目的
1.使学生知道小数的产生过程,理解分数与小数的联系,明确小数的计数单位,从而认识小数并理解小数的意义.
2.培养学生的观察能力、分析能力、抽象概括和迁移能力.
3.通过小数这个新的数域的学习,使学生认识到科学是没有止境的,培养学生学习数学的兴趣和刻苦钻研、探求新知的良好品质,并受到唯物主义的教育,感受数学与生活的紧密联系.
教学重点
使学生通过分数与小数的联系从而理解小数的意义.
教学难点
使学生真正理解小数的意义.
教学步骤
一、设疑激趣:
1、我们都学过那些数?举例说明。(整数、分数)
2、你还见过那些数?(小数)
3、你在那里见过?(学生举例,教师可以适当出示:如出租车的计价牌、商场的价签等。)
4、你对小数还有那些了解?你想知道有关小数的那些知识?
(教师可以根据学生的回答,有选择的进行板书:小数的意义,产生,与整数、分数的关系等)
(二)探究新知
1.教学小数的产生.
①口算:10÷10=1÷10=
100÷10=1÷100=
1000÷10=1÷1000=
教师提问:你能说说两组题有什么特点吗?
②学生活动:分组测量课桌的长与宽.(利用直尺)
教师提问:从测量结果中,你发现了什么?
教师小结:在进行计算和测量时,往往得不到整数的结果.除了可以用分数的形式表示以外,还可以用另一种新的数来表示,这就是小数.
2.教学小数的意义.
(1)认识一位小数:演示课件小数的意义
①根据图意,填出对应的分数.
②教师出示:把1米平均分成10份,每份是()分米,是()米;这样的3份是()分米,是()米.
③教师指出:1分米=米,也可以写成0.1米.3分米=米,也可以写成0.3米.
④教师提问:你能将刚才填写的另外两个分数改写成小数吗?
(米=0.5米;米=0.9米)
⑤教师小结:你发现分数与小数的联系了吗?
(分母是10的分数,可以写成一位小数。一位小数表示十分之几。)
⑥教师提问:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。
(2)认识两位小数:继续演示课件
猜一猜:你能猜一猜两位小数与什么样的分数有关系吗?
①教师出示:把1米平均分成100份,每份长()厘米,是()米;这样的7份是()厘米,是()米.
②引导学生观察米尺,结合教师出示的习题然后进行分组讨论.
(指名回答并板书:1厘米=米=0.01米;7厘米=米=0.07米.)
③教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几.
(3)认识三位小数继续演示课件
教师提问:把1米平均分成1000份,每份长是多少?
学生在尺上找出1毫米后,教师出示1厘米的放大图.
引导学生从图中找出1毫米的,并说明理由,使学生明确:1米是千分之一米,还可以写成0.001米.
(板书:1毫米,米,0.001米)
教师提问:8毫米是千分之几米?写成小数是多少呢?13毫米昵?
(板书:8毫米,米,0.008米)(板书:13毫米,米,0.013米)
教师提问:分母是1000的分数可以写成几位小数?(板书:三位小数)
教师说明:照这样分下去,还可得到米写成0.0001米......
(板书:米,0.0001米)
(4)抽象、概括小数的意义
教师提问:把1米看成一个整体,如把一个整体平均分成10份、100份、1000份......
这样的一份或几份可以用分母是多少的分数表示?
教师讲解:
②把分数写成小数时,可以仿照整数的写法,写在整数个位的右面,用圆点隔开.
学生讨论:什么叫小数?
教师补充并概括:分母是10、100、1000、......的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几......的.数叫做小数.
3.教学例1继续演示课件(出示例1)
教师出示:1角是元,用小数表示是()元.
2分是元,用小数表示是()元.
2角5分是元,用小数表示是()元.
牛奶每袋8角5分,用“元”作单位是()元.
组织学生讨论,并指名说一说每道题都是怎样想的?
教师提问:你发现分数与小数之间有什么关系吗?
(分母是10的分数可以写成一位小数,分母是100的分数可以写成两位小数,分母是1000的分数可以写成三位小数......)
(三)巩固练习:
1、书P86做一做:0.3里面有()个十分之一.
0.05里面有()个百分之一.0.009里面有()个千分之一.
2、书P89(1)把下图中图色的部分用分数和小数表示出来.
分数:_______分数:_______分数:_______
小数:_______小数:_______小数:_______
3、书P89(2)用线段把相等的小数和分数连起来.
(四)课堂小结:
我们以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系.
①当测量、计算的结果不能用整数表示的时候,就可以用分数或小数表示.
②分母是10的分数可以写成一位小数,分母是100的分数可以写成两位小数,分母是1000的分数可以写成三位小数......
③分数的计数单位分别是......,这也是小数的计数单位.
④整数、分数、小数每相邻两个计数单位之间的进率都是10.(举例说明)
板书设计:
小数的意义教学设计4
一、教学目标
(一)知识与技能
在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
(二)过程与方法
在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
(三)情感态度和价值观
在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
二、教学重难点
教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。
教学难点:理解小数的计数单位及它们间的进率。
三、教学准备
米尺、彩带、磁条。
四、教学过程
(一)创设情境,导入新课
1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度是多少?
2.你们估计得对不对呢?让我们一起用直尺来验证一下。
3.谁愿意把你测量的结果告诉大家?
学生汇报预设:
学生1:我测量课桌面的长度是120厘米。
学生2:我测量课桌面的长度是1米2分米。
教师:课桌的长度如果以米为单位就是1.2米。
(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。
(2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。
【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。
(二)尝试探究,理解意义
1.认识一位小数。
教师:出示1米长的彩条,如果把1米平均分成10份,每份是多长?把1分米改写成
用“米”做单位的分数怎么表示?说一说你是怎么想的?
学生交流想法。
教师总结:米用小数表示就是0.1米。
教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。
学生独立完成,教师巡视。交流分享学生的思考过程。
教师:仔细观察黑板上的每组分数和小数,你发现了什么?
结合学生回答,教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。
练习:用小数怎么表示?呢?0.5怎样用分数表示?
参考答案:0.9,0.6,。
2.认识两位小数。
教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?
1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?
学生先独立完成,再合作交流。
教师:观察每组中的分数和小数,说一说你发现了什么?
学生1:分数的分母都是100。
学生2:小数点的右面都有2个数字。
教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。
【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的小数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。
3.小数的意义。
教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的.小数进行研究,完成表格。
学生先独立研究,再汇报交流结果,教师根据学生回答适时板书。
教师:通过你的研究,你发现了什么?
学生1:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是米,写成小数就是0.001米。
学生2:三位小数就表示千分之几。
教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?
学生预设:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。
教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?
学生:四位小数表示万分之几,五位小数表示十万分之几。
结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?
学生1:我认为分母是10、100、1000、10000等的分数可以用小数来表示。
学生2:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……
学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
4.认识小数的计数单位。
教师:大家都知道分数中,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?
学生交流,教师根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……
【设计意图】引导学生借助对“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,有效地锻炼了学生的多种能力,突破了重难点,同时也渗透了小数中相邻两个计数单位间的进率。
(三)巩固练习,强化认知
1.第33页做一做。
2.第36页练习九第1题。
3.填空:
0.6 里面有6个( );再增加( )个 0.1就等于1。
0.25里面有( )个0.01。
32个0.001是( );32个0.01是( );32个0.1是( )。
4.在括号里填上适当的小数。
学生先独立完成,教师再让学生汇报答案,集体评议。
【设计意图】通过不同层次的练习设计,让学生在对比练习的过程中不断加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用价值,帮助学生根据小数意义理解生活中常见的小数所表示的含义。
(四)总结梳理,拓展延伸
1.今天这节课我们学习了哪些知识?你有什么收获?
2.介绍对小数发展具有杰出贡献的两位数学家。
【设计意图】通过问题帮助学生梳理本课所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。
小数的意义教学设计5
教学目标:
1.让学生将一张正纸方形平均分成十份、一百份…的基础上,通过涂一涂、想一想、说一说的过程中理解小数的意义。
2.使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
3.培养学生操作、观察、分析、推理的能力。
教学重点和难点:
小数意义的理解。
教学准备:
每个学生空白正方形纸一张、信封(内放平均分成了十份和平均分成了一百份的正方形纸各一张),课件。
教学过程:
一、 导入课题
师:同学们,你们熟悉《三字经》吗?我们来一起背几句好吗?(生背)
师:《三字经》中有这样一句话“一而十,十而百,百而千,千而万”你知道是什么意思吗?
生1:这句话的意思是十个一是十,十个十是一百,十个一百是一千,十个一千是一万。
(师从右往左板书:10000 1000 100 10 1)
师:看来,《三字经》中也藏着有趣的数学问题,观察刚才的一组数,从右往左看,从1开始,10个1是10,10个10是(100),10个100是(1000),10个(1000)是(10000),按这样的规律,接下去应该是哪些数呢?
生1:接下去是100000、1000000…。
师:无穷无尽。(板书:100000…)
师:从左往右看,10000、1000、100、10、1,接下去又是哪些数呢?
生2:0.1、0.01、0.001…
师:也是(无穷无尽)。(板书:0.1,0.01,0.001…)
师:这里的0.1、0.01、0.001…表示什么意思,它们之间的进率又是多少呢?就是今天我们要学习的“小数的意义”。
[评析:《三字经》是我国不可多得的儿童启蒙读物,可谓家喻户晓,脍炙人口,深受儿童所喜爱,从《三字经》中的数学问题入手,很吸引儿童的眼球。在学生还没有接触“扩大到、缩小到”这些数学术语之前,教师通过让学生观察10000、1000、100、10、1这一数组,引导学生根据一组数的规律进行推理,自然地引出了课题。更妙的是,从“大数学”中去看小数,建立了整数和小数间的联系,并在无形中渗透了进率关系,为学生进一步学习小数的意义打下伏笔。]
二、 小数意义的探究
1.探究一位小数的意义。
师(出示正方形纸):如果我们用一张正方形纸表示“1”话,请你估计一下,0.1该有多大?
师:请将你心目中的0.1用彩色笔在这张纸上涂出来。
(展示:师根据学生所涂,取三份有代表性的作品进行投影展示)
师:对于这三个同学心目中0.1的大小,你有什么想说的?
生1:第一张涂得太多了,我觉得有0.5啦,第三张涂得又太少,没有0.1,第二张和0.1差不多。
师:你们觉得怎样能准确地在这张纸中表示出0.1呢?
生2:把这张正方形纸看作“1,平均分成十份,涂出其中的一份,就是0.1。
师:这里的一份还可以用什么数来表示?
生3:十分之一。
师:老师给每位同学们都准备了一张平均分成十分的正方形纸,请你从信封里拿出来,并在这张纸上涂出其中的3份,想一想,涂色部分可以用一个怎样的小数来表示?它里面有多少个0.1?
师(展示):0.3表示什么意思呢?
生4:0.3就是表示把一张纸看作“1”,平均分成十份,取其中的三份,用小数表示就是0.3,还可以用分数十分之三来表示,0.3里面有3个0.1。
师:涂色的部份用0.3表示,哪么空白部份呢?
生5:空白部份用0.7表示。
师:0.7表示什么意思?还可以用什么数来表示?它里面有多少个0.1?
师(投影):阴影部份用小数怎样表示?
生7:阴影部份可以用小数0.8表示。
师:0.8里面有多少个0.1呢?
生7:0.8里面有8个0.1。
师:看到这个图,你还能想到哪个数?
生8:十分之八。
生9:0.2,十分之二。
师:想一想,1里面有多少个0.1呢?
生10:1里面有10个0.1。
师:思考一下,刚才这些小数我们都是怎么得到的?
生11:刚才我们都是把一张正方形纸看作“1”。平均分成十份,取其中的几份就是零点几。
师:如果用分数表示,也就是(十分之几)。
师:看来,这些小数,都是用来表示(十分之几)的。(板书:十分之几)
[评析:以往的教学,教师习惯通过将米尺平均分成十份,每份是1分米,也就是十分之一米,用小数表示就是0.1米,学生在接受这一知识上,没有任何理由,就是一种规定。本课从学生的生活经验出发,将 1平均分成十份,每份就是0.1,来,再结合分数的意义,0.1也等于十分之一,通过意义上的联系,借助十进分数来进一步帮助学生理解小数,这一招可谓精妙至极。让学生在一张正方形纸上表示出0.1的大小,这一设计很有新意,在让学生动手操作的过程中,感悟一位小数和分母是十的分数之间的关系。通过用小数表示涂色部分和空白部分,让学生说说它们里面各有多少个0.1,深刻体会1里面有10个0.1。]
2.探究二位小数的'意义
师: 0.01你觉得有多大呢?请同学们在头脑里想像一下,很快地涂在刚才这张纸的反面。
师(作品展示):你是怎么思考的?
生1:我是将0.1再平均分成十份,每份就是0.01。
生2:我是将一张正方形纸平均分成一百份,每份就是0.01。
师:从这里我们可以看出,1里面有(100)个0.01。
师:看到0.01,你还会想到了哪些数?
生:
生:
师:请同学们在信封里取出平均分成了一百份的正方形纸,现在请你在这张方格纸上创造一个小数,先在方格纸上任意涂上一些格字,再想一想,你涂色的部分可以用一个怎样的小数来表示?再同桌间说一说这个小数表示什么意思?看到这个小数,你还会想到哪些数呢?
生5:…
生6:我涂了20个格字,用小数表示是0.20。
师:你们知道这里的涂色部分除了可以用0.20表示外,还可以用哪个小数来表示吗?你是怎么想的?
生7:也可以用0.2来表示。…
师:刚才的这些小数我们又是怎么得到的呢?
生8:把一张正方形纸看作“1”。平均分成一百份,取其中的几份就是零点零几或零点几几。
师:这些小数,又都是用来表示什么的呢?
生9:这些小数都是用来表示百分之几的数。(板书:百分之几)
[评析:在学生学习了一位小数意义的知识基础上,进一步探究两位小数的意义,就变得水到渠成。学生在将0.1平均分成十份和将1平均分成一百份来表示0.01的过程中,创新思维得到了充分发展。在创造小数的过程中,学生的个性得到了充分的张扬,当学生涂出20份来0.20 来表示的时候,教师不失时机地引导学生,这个涂色部份可以用哪个小数来表示,巧妙地渗透小数性质这一知识点。]
3.探究三位小数的意义
师:对于0.001,你有什么想说的?
生1:把一张纸平均分成1000份,每份就是0.001。
生2:也可以把0.01平均分成十份,每份也是0.001。
生3:还可以把0.1平均分成一百份,每份也是0.001。
生4:0.001很小很小。
师:看到0.001,你会想到哪些小数?
生5:我想到了0.365,就是涂365个0.001。
…
师:这些小数又是用来表示什么呢?(板书:千分之几)
师:除了有表示千分之几的小数外,还会有表示(万分之几、十万分之几…
的小数,无穷无尽。
[评析:在学习三位小数所表示的意义上,教师完全放手,让学生通过已有的知识展开推理,自己去体验、感悟,学生获得的不仅是“鱼”,更是“渔”。]
三、 小数意义的提炼
师:刚才我们认识了这么多的小数,想一想,什么是小数?
生1:这些小数都是用来表示十分之几、百分之几、千分之…的。
师:用来表示十分之几、百分之几、千分之几……的数,叫做小数。(板书)观察这些十分之几的小数、百分之几的小数、千分之几的小数,他们又有什么不同呢
生2:表示十分之几的小数的小数点后面有一个数字。
师:像这样小数点后面只有一个数字的小数我们叫它为一位小数。
生2:表示百分之几的小数,它的小数点后面有二个数字…
…
师:你知道一位小数的计数单位是多少吗?
生:一位小数的计数单位是0.1。
师:0.3里有几个0.1?两位小数的计数单位呢?三位小数呢?
…
师:你能用一句话来概括这些计数单位之间的进率关系吗?
生:每相邻两个计数单位间的进率是10。
师:如果不相邻,它们的进率又是怎样的呢?
[评析:学生在课堂中,通过多次折一折、涂一涂、想一想、说一说的实践,为学生小数意义的理解和归纳扫平了障碍。在计数单位之间进率的掌握上,由于有前期通过多种方法得到0.01和0.001的基础,为每相邻两个计数单位间的进率和不相邻两个计数单位间进率的掌握变的轻而易举。]
四、 解决问题
你能用一个数来表示下图阴影部分的面积吗?
分数:
小数: 小数: 小数:
[评析:作业的设计独具匠心,第一题通过用一个带小数来表示阴影部分,消除学生错误地将小数理解成就是小于1的数。第二题通过用0.50元、0.5元来表示5角人民币和用0.200千克、0.20千克和0.2千克来表示200克鸡精,既和前面的教学产生呼应,又为下一节小数性质的学习埋下伏笔。]
五、 总结。
小数的意义教学设计6
教材分析:
本单元是在掌握了整数的概念和计数方法后,以及初步认识了分数与一位小数的关系的基础上进行教学的,主要内容是小数的意义和性质,这是系统教学小数知识的开始,结合小数的意义和性质,教学小数点的移动引起小数大小的变化、比较小数的大小、小数与单位换算、求小数的近似数等内容。
一、本单元教学内容:
1、小数的意义和读写法。
2、小数的性质和大小比较。
3、小数点移动引起小数大小的变化。
4、小数与单位换算。
5、小数的近似数。
二、重难点设置:
1、正确理解小数的意义和性质、小数点的位置移动引起小数大小变化的规律。
2、小数与单位换算。
3、小数的近似数。
学情分析:
1、小数在日常生活中有着广泛的应用,为学生的学习过程提供了现实基础,也为教学提供了方便。因此,让学生通过小组讨论等,逐步培养数感,促进学生对知识的理解。
2、教学中,应注重发现知识间的联系和区别,提高学生的知识迁移能力,通过类比和推理加强理解。
3、认识事物的过程是呈螺旋上升的,教学中,应注重几时巩固练习,促进理解。
教学要求:
1、了解小数的产生,理解并掌握小数的意义,会正确读写小数。
2、理解和掌握小数的性质,会正确比较小数的大小。
3、理解和掌握小数点位置移动引起小数大小变化的规律,会对一个数进行不同单位的改写。
4、掌握求一个小数的近似数的方法,会按要求正确求一个小数的近似数。
教学建议:
1、重视基本概念、基础知识的教学。
本单元的一些概念、法则、性质非常重要,是进一步学习的重要基础一定要让学生掌握好。如小数的性质,不仅可以加深学生对小数意义的理解,而且还是小数四则计算的基础。再如小数点位置移动引起小数大小的变化,既是小数乘、除法计算的基础,同时也是学习小数单位换算的基础。这些知识逻辑性比较强,学生学习起来有一定的困难,教学时,要注意根据学生的认知特点,采用适宜的方法帮助学生理解这些知识。
2、注意调动学生已有的知识和经验,促进知识的迁移。
学生在前面所学的小数的初步认识以及整数的有关知识和经验,都可能在本单元的学习中发挥积极的迁移作用。如小数大小的比较就可以将整数大小的比较方法迁移过来。教师应充分利用这些有利条件,激活学生的相关知识基础,促进学习的正迁移,放手让学生自主探索,使学生在学会的同时,学习能力也得到提高。
1、小数的意义和读写法
第一课时小数的意义
教学内容教材第32、第33页的内容及第36页练习九的第1—3题。课型新课
教学目标1了解小数是如何产生的,理解和掌握小数的意义。
2、明确小数与分数之间的联系,掌握小数的计数单位以及它们之间的进率。
3、经历小数的'发现、认识过程,感知知识与生活之间的密切联系,体验探究发现和迁移推理的学习方法,激发学生的学习兴趣,培养学生动手实践、合作探究的学习习惯。
教学重点理解和掌握小数的意义、小数计数单位以及它们之间的进率。
教学难点理解小数的计数单位以及它们之间的进率。
一、情境导入
老师课前布置了收集生活中的小数的作业,现在谁能给大家说说你都在哪里见过小数?
(学生汇报交流:从商店的价签上、出租车的计价表上、时间上、数学书后面的价格上……)
师:其实生活中还有很多地方需要用到小数。请同学们估算一下,我们教室讲桌的高大约有几米呢?
(学生可能会回答出:1米、1米多等等)
师:下面就请两位同学合作来测量一下讲桌的高(用米作单位)。看看你猜测的对吗?
学生汇报测量结果。
师:在日常生活中,有时测量结果不能用整数来表示,像这样得不到整数结果的例子在生活中还有很多,于是人们想到了用分数或者小数来表示,这样就产生了小数,今天我们就研究“小数的意义”。(板书:小数的意义)
二、自主探究
1、认识一位小数。(课件出示例1)
师:同学们仔细观察这把1米长的尺子被分成了多少份?
生:10份。
师:请同学们想一想,每一份是多长呢?如果用米作单位写成分数是多少米?写成小数又怎样表示呢?
小组合作探究:
(1)学生拿出米尺观察,先比画一下“1分米”的长度。
(2)结合米尺讨论1分米用米作单位,用分数、小数的表示方法。
(3)学生汇报时可能会说出:1分米=米=0.1米
让学生继续观察米尺,思考这样的3份、7份写成分数、小数各是多少米?
(指名汇报,教师板书)
生:3分米=米=0.3米7分米=米=0.7米
师:仔细观察,你们发现分数与小数的联系了吗?
生1:我发现分数和小数的关系非常密切,可以把分数写成小数。
生2:我发现分母是10的分数可以写成一位小数。
师:请同学们试着说一说,一位小数表示什么呢?
师生共同总结:分母是10的分数可以写成一位小数,一位小数表示十分之几。
2、认识两位小数。
如果把1米长的尺子平均分成100份,那么每份长又是多少米呢?
师:如果用米作单位,写成分数是多少米?写成小数又是多少米?
生:把1米平均分成100份,其中的1份是1厘米,也就是米,用小数表示为0.01米。
教师根据学生回答板书:1厘米=米=0.01米
师:引导学生观察米尺,这样的3份、6份写成分数、小数各是多少米?
生:3厘米=米=0.03米6厘米=米=0.06米
师:仔细观察,你们又发现分数与小数有什么联系?
师生共同总结:发现分母是100的分数可以写成两位小数,两位小数表示百分之几。
3、认识三位小数。
师:刚才我们认识了一位小数和两位小数,相信同学们能推想出,如果再把1米长的线段平均分成1000份,每份在尺子上长是多少米?写成分数、小数各是多少米?
生:把1米长的线段平均分成1000份,每份是1毫米,在尺子上长是米,如果用小数表示为0.001米。
师:如果把6毫米、13毫米用米作单位写成分数、小数各是多少?
生:1毫米=米=0.001米6毫米=米=0.006米13毫米=米=0.013米
师:说一说,0.006米、0.013米各自表示的意义。
师生共同小结:分母是1000的分数,可写成三位小数,三位小数表示千分之几。
师:如果把1米继续按上面的方法平均分下去,这样的1份就是米,写成四位小数就是0.0001米,我们再继续分下去就可以得出五位、六位小数。
三、探究结果汇报
师:上面的例子各是把1米平均分成多少份?
生:10份、100份、1000份……
师:这样的一份或几份用什么样的分数来表示?
生:十分之几、百分之几、千分之几……
师:这些分数写成小数分别是多少?
生:0.1、0.01、0.001……
师:你能用一句话说说什么是小数吗?
师生小结:分母是10、100、1000……的分数可以用小数表示。
师:十分之几、百分之几、千分之几这些分数的计数单位分别是什么?这些计数单位用小数表示分别是多少?
生:十分之一、百分之一、千分之一都是分数单位,而分数与小数又有密切的关系,所以小数的计数单位也是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(板书)
师:观察米尺回答,可以小组讨论,议一议。
(1)0.1里面有()个0.01米。0.01里面有()个0.001米。
(2)小数每相邻两个计数单位间的进率是()。
师:刚才我们已经看到了0.1米里面有10个0.01米,也就是0.1的10倍,我们就说0.1和0.01之间的进率是10,,0.01里面有10个0.001米,也就可以说0.01和0.001之间的进率是10,用一句话可以怎么概括?
生:每相邻两个计数单位之间的进率是10.(板书)
四、师生总结收获
师:通过本课的学习,同学们有哪些收获?
生1:我知道了分母是10、100、1000的分数可以用小数表示。
生2:小数每相邻的两个计数单位之间的进率是10.
师:除了数学知识方面的收获外,在数学思想和方法方面呢?
生1:分数和小数可以互化,这是数学的转化思想。
生2:认识小数时,借助了米尺,这是数学的“数形结合”思想。
生3:我知道了数学可以类比推理。
五、板书设计
小数的意义教学设计7
教学目标:
(一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。
(二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(三)培养学生的观察、分析、推理能力。
教学重点和难点:
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及相邻单位间的进率,既是本课的重点,也是本课的难点.
教学过程:
一、小数的产生。
1、谈话导入
问:在三年级时我们初步认识了小数,你能说一个小数吗?
(根据学生的回答,选一部分板书)
问:你还知道小数的哪些知识?
2、那小数是怎样产生的呢?(出示课件)
①先出示课件,让学生观察,哪些能用整数表示?哪些得不到整数的结果?
②小结:在测量时、计算时及物体的单价,有的能用整数表示,有的得不到整数的结果。像这样得不到整数结果的例子在生活和学习中有很多,聪明的人们于是想到了用分数、小数来表示,于是小数便产生了。(板书:小数产生)
二、小数的意义。
1、认识一位小数
师: 米 还可以怎么表示?
生1:用分数表示是1/10米
生2: 1分米
师:你是怎么想的?
生:把 1米 平均分成10份,每一份是1分米,用分数表示是1/10米,用小数表示是 米 。
师: 米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)
师: 米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)
师:像、、……这样的小数,小数点后面只有一位数,这样的小数叫一位小数。
(板书:一位小数)
2、认识两位小数
师: 米 还可以怎么表示?
生1:用分数表示是1/100米
生2: 1厘米
师:你是怎么想的?
生:把 1米 平均分成100份,每一份是 1厘米 ,用分数表示是1/100米,用小数表示是 米 。
师: 米 是几厘米?用分数表示是多少米?(生略)
师: 米 是几厘米?用分数表示是多少米?(生略)
师:像、、……这样的小数,小数点后面有两位数,这样的小数叫(两位小数)。
(板书:两位小数)
3、认识三位小数
师: 米 还可以怎么表示?
生1:用分数表示是1/100米
生2: 1毫米
师:你是怎么想的?
生:把 1米 平均分成1000份,每一份是 1毫米 ,用分数表示是1/1000米,用分数表示是1/1000米。
师: 米 是几毫米?用分数表示是多少米?(生略)
师: 米 是几豪米?用分数表示是多少米?(生略)
师:像这样的小数,小数点后面有三位数,这样的小数叫(三位小数)。(板书:三位小数)
师:分母是几的分数能写成四位小数?(1000)
分母是几的分数能写成五位小数?()
师:依次类推(板书:......)
4、概括小数的意义
师:(结合板书)这些都是同学们刚刚写出的分数和小数,不同的`分数可以写成相对应的小数,例如:1/10可以写成;
5/100可以写成; 12/1000可以写成。
那么分数和小数之间的这种联系,谁能用自己的话来说一说呢?
师:下面分小组说一说你们各自的想法。
(汇报讨论结果。)
组1:分母是10、100、1000的分数可以用小数来表示。
组2:十分之几是一位小数,百分之几是两位小数,千分之几是三位小数……。
组3:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。
组4:分母是10、100、1000的分数可以用小数来表示,比如说十分之几可以用一位小数来表示,百分之几可以用两位小数表示,千分之几可以用三位小数表示……。
小结:
我们一起来看板书,刚刚你们已经说到了分母是10的分数可以用一位小数来表示,分母是100的分数可以用两位小数来表示,分母是1000的分数可以用三位小数来表示,用一句话概括就是——分母是10、100、1000……的分数可以用小数表示。
这就是。(板书:小数的意义)
5、认识小数的计数单位。
师:里面有( )个 里面有( )个
生1:里面有( 3 )个
生2:里面有( 8)个
师:像、这样的一位小数都是由许多个 组成的,我们就说 是一位小数的计数单位,用分数表示是十分之一。
师:那么你们猜一猜,两位小数的计数单位是什么?
生: 是两位小数的计数单位,用分数表示是百分之一。
师:那三位小数的计数单位是(? )
生:(千分之一)
师:那四位小数的计数单位是( ?)
生:(万分之一)
师:依次类推(板书:......)
6、认识进率
(结合板书)一位小数的计数单位是,两位小数的计数单位是,三位小数的计数单位是,那里面有( )个
里面有( )个 (课件出示)
生:里面有( 10)个
里面有( 10 )个
师:为什么里面有( 10)个,里面有( 10 )个,同学们可以结合板书去思考?(四人一小组进行讨论)
生:讨论
生:汇报
生1: 米 =1分米 米 = 1厘米 1分米= 10厘米
所以里面有( 10 )个 ......
师:里面有( 10)个,里面有( 10 )个 ,依次类推(板书:......)
用一句话可以怎么概括?
师:(课件出示) 每相邻两个计数单位之间的进率是10
师:(结合板书)里面有( 10)个,里面有( 10 )个 ,那里面有( )个 ?
生:里面有( )个 ?
师:你们是怎么想的?生:......
四、巩固练习。
师:从上课开始到现在,我就发现同学们的推理能力特别强,那剩下的时间我们就一起去闯智慧关,有没有信心,接受挑战?(有)
师:请看大屏幕,第一关(课件出示)
1、填一填(书51页做一做)
2、哪两只手套是一副?用线连一连。(书55页第2题)
第二关
3、在( )里可以填几
( )个是 里面有( )个
里面有( )个和( )个组成的
里面有( )个,有( )个,有( ), 个
4、想一想
1元4角2分=( )元 元=( )元( )角( )分
35厘米=( )米=( )分米 米 =( )分米=( )厘米
第三关
5、在括号里填上适当的分数和小数
五、课堂小结。
这一节课我和小朋友合作得非常成功,我相信每一个同学都有很多的收获,谁先来说一说?
小数的意义教学设计8
教学内容:
北师大版教材第八册 小数的意义
教学目标:
1.使学生了解小数的产生,理解小数的意义。
2、培养学生收集信息、动手操作能力和抽象概括能力。
3、渗透事物之间普遍联系的观点、实践第一的观点。
4、加强对学生学习方法的指导。
相对应的课程目标:
1、进一步认识小数,探索小数、分数之间的关系,并会进行转化。
2、进一步体会数在日常生活中的作用,能运用数表示事物,并能进行交流。
教学重点、难点:
理解和抽象小数的意义。
教学理念:
1、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。让学生用个性化的理解方式表达对小数的理解。
2、尊重每一位学生的学习成果,建立平等、民主、愉悦的学习氛围。
教材及学情分析:
小数的认识是在三年级下册“元、角、分与小数”及“分数的初步认识”的基础上进行的。“小数的意义”是通过实际操作,借助几何模型使学生体会到小数与分数之间的关系。小数是十进分数的另一种书写形式,要使学生理解小数的意义,必须通过实际操作。把一个正方形看作“1”,把“1”平均分成10份,1份是它的十分之一,就是0.1;把“1”平均分成100份,1份就是它的一百分之一,也就是0.01。从而使学生体会到分母是10、100、1000等的分数可以用小数表示。在练习中通过在直线图上表示十进分数和小数的问题,进一步沟通小数和分数之间的关系。
教师的教就是为了不教,作为学生学习活动的参与者、合作者、引导者,只有让学生拥有好的学习方法才会有真正意义上的有效学习。这也是学生一直迫切需要掌握的。那么这节课在学习新知识的同时另外一个重点就是对学生进行学习方法的指导。
教具准备:
课件
一、导入。
在我们以前的学习当中,重点研究了整数。但是由于在日常生活中我们进行测量、计算等活动的时候往往经常得不到整数的结果,所以我们又进一步学习了分数。其实在用分数表示的基础上我们还可以用小数表示。这个学期我们将重点学习小数。
二、介绍方法:
怎样学好小数呢?要想学好它,就要讲究一定的学习方法,制定一个计划,按一定的步骤学习,就能收到事半功倍的效果了。今天老师就向大家介绍一种学习方法。(出示学习步骤)
学习步骤:关于小数:
1、我已经知道了什么?
2、我还想知道什么?
3、通过学习我又知道了什么?
4、动动手,检测一下。接下来我们就按照这样的步骤开展学习。
三、思考、讨论:
1、我已经知道了什么?
小数点、小数在生活中的'广泛运用……
师:看来大家对小数的了解很有限,那么更有必要认真的学习小数了。
2、还想知道什么?
小数的起源、发展、计算、数位顺序、读写法、意义……
师:要想了解小数的这些知识,首先最基本的就是要了解小数的意义。那么这节课我们就来了解小数的意义吧。
四、引导学生自主学习小数的意义。
1.小数的意义,自学小数的意义(看书第3页)
(1)出示课件,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;取其中3份就是十分之三,用小数表示是0.3。
把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。
(2)以1米为例结合具体的数量理解小数
把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。
2、同桌之间互相交流,用数学语言说一说自己的涂色部分用分数和小数表示,分别是怎样的。
4、师:像0.1、0.5、0.7这样的小数是一位小数。像0.01、0.19、0.08这样的小数是二位小数。
5、想一想:1/1000、1/10000用小数怎样表示?23/1000、127/1000呢?它们分别是几位小数?观察黑板上的数据,想一想: 什么样的分数可以写成小数呢?
6、看书P3,找一找你认为最重要的那句话,读一读。分母是10、100、1000……的分数可以用小数表示。
7、看学习步骤3:通过学习我又知道了什么?集体交流
8、质疑(学生提问)
五、学习步骤4:检测。
1、在直线上标出相应的小数、分数。见P5、1
2、分数小数的转化P5 2、3
3、同伴相互出题。
教学反思:
这节课既是一节数学知识学习课,同时又是一节学习方法的指导课。通过对教学的设计,教学,对学生的检测,我有以下体会:
1、教师要善于倾听。学习活动要以学生为本,在学生思考、讨论的过程中,经常会有精彩的见解,教师要善于捕捉。尤其是当学生有独特的见解出现时,教师要及时给予反应,以此保护学生对数学的积极性。当然这需要教师在平时的教学实践中注意有意识地积累。
2、注重方法指导。 本节课的特色和重点之一即学习方法的指导。但是学习方法的指导应该是贯穿整个学习过程的,所以教师在进行方法指导的时候要让学生清楚本节课介绍的方法还适合那些内容的学习,其他的学习内容应该用什么样的学习方法更好。
3、注重基础知识的掌握。本节课既让学生学习了好的学习方法,又让学生扎实地学习了小数的意义,关注了学生多方面能力的发展。
存在的问题:数学课程要让学生了解数学在我们生活中无处不在,但本课与生活的联系不够,在学生的发言中教师的把握不及时。另外,要注重多样化的课程资源的整合,学习方式还可以更丰富一些,如认识一位小数、两位小数的方法可以有变化,以拓展学生的思维。
案例点评:《小数的意义》这一节课整体框架好,是一节学习方法指导课。本节课能够很好地确定研究的课题、目标,即学习方法的指导,有研究的方向。并且能够引导学生参与目标的制定;学习过程中能用多种方法引导学生学习,学生基础知识、基本技能掌握较好;师生关系融洽,学习氛围好。
小数的意义教学设计9
教学内容
苏教版五年级上册第28-29页。
教材分析
在一至四年级,“数与代数”领域主要教学整数的知识,学生已经初步掌握了十进制计数法。三年级(下册)曾经教学了一位小数,初步体会了一位小数与十分之几的分数间的联系,这些都是本课基础。本课教材中例1、例2借助常用的元、角、分和米、厘米、毫米单位之间的换算,通过这样的感性认识,初步抽象出小数的意义。本课又是进一步教学小数性质、比较小数大小、改写大数目的基础,因此小数的意义是本单元教学的重点。
学生分析:
这一部分内容学生在三年级初步认识小数时其实已经有了学习的基础。学生有以元为单位的小数表示金额,以米为单位的小数表示长度的经验。如果本节课再把大量的时间放在这一方面,无异于原地转圈。对于五年的学生来讲,有了一定的学习能力,对数字语言、文字语言以及图形符号语言有了一定程度的认识和理解。所以,课前的预习,五年级孩子是可以胜任的。所以教师要充分发挥学生自主探索的能力,让学生自主运用已有的经验理解小数的意义,从而实现感性认识到理性认识的飞跃。
设计意图:
本节课是一次校级教研课,在第一次试教时按照例题教学,逐步去理解小数的意义。实施下来发现,学生思维就局限在这些单位换算中,而对小数意义的理解并不到位。于是备课组老师就讨论对于这样的概念课怎样才能达到高效呢?最后商量一致同意尝试学生先学后教,由学定教的教学方式,将本节课的设计分成三大板块。
(1)前置学习,初步感悟。课前通过引导题,让学生自学例1、例2,在常用的价钱和长度单位换算之间,初步感悟分数与小数的联系。同时通过检测题了解学生是否真正理解它们之间的换算,理解分母是10、100、1000……的分数可以用一位小数、两位小数、三位小数……表示。
(2)课中操作,沟通联系。小数的意义是在分数意义的基础上建立起来的。这符合认知建构的理论观点:学习者对新知识的理解程度与他们内在的认知结构息息相关。布鲁纳说得更清楚:“获得的知识如果没有完整的结构把它们连在一起,那是一种多半会遗忘的知识。”学习一个概念,需要在心理上组织起适当的认知结构,并使之成为个人内部知识网络的'一部分。沟通小数与十进分数的内在联系,是引导学生理解小数意义的关键。怎样让学生主动建构小数与十进分数之间的联系?我们借鉴了特级教师朱国荣老师的设计。用一张正方形纸表示整数“1”,让学生根据自己的理解,表示0.1的大小,在此基础上认识0.9、0.2、0.8……从而理解1里面有10个0.1.继续拓展,认识两位小数、三位小数……
(3)分层练习,实质理解。第一,基本练习,对口令;第二,看图写小数;第三,结合数轴找小数。这三组练习题,层层递进,检测学生能否从本质上真正理解小数的意义。
实施过程
一、前置学习,初步感悟。
1.揭题:今天这节课,我们学习新的一单元,一起读一读。在三年级我们已经初步认识了小数。今天我们重点来研究小数的意义。
2.课前大家对今天学习的内容已经进行了预习,小组交流,把你的错误向小组里的同学请教一下。(自学学习材料附后)
3.全班汇报:
第一层次:角改写成元作单位可以用一位小数表示,分改写成元作单位可以用两位小数表示。
第二层次:分米改写成米作单位就是十分之几米,也可以写成一位小数,厘米改写成米作单位就是百分之几米,也可以写成两位小数,毫米写成米作单位就是千分之几米,也可以写成三位小数。
二、课中操作,沟通联系。
1.理解一位小数的意义
(1).刚才我们通过课前研究,初步感知了小数和分数的联系,那你能根据自己的理解说一说0.1的意义是什么吗?
(2).那么老师这里有一张正方形纸,如果把这张正方形的纸看作1,怎么在这张纸上表示0.1的大小。
拿出正方形纸,分一分,涂一涂表示0.1的大小。
展示交流,看看这些同学的作品,发表你的意见。
那谁能很自信地确定你表示的是正确的?介绍你的想法。还有不一样的吗?
虽然形状不一样,但所表示的都是把一个正方形平均分成10份,涂了其中的一份。
(3).课件演示,这样表示0.1吗?要表示0.1还需要涂出一份。再说一说0.1表示什么意义。
(4).仔细看,你除了看到0.1还看到那个小数?你是怎么看到0.9的?写成分数是什么?0.9和0.1合起来是多少?1里面有几个0.1。
(5).这里你能看到哪2个小数,写成分数是多少。合在一起是几?
(6).把1平均分成十份,我们认识了0.1、0.9、0.2、0.8外还可以表示那些小数。
这些小数都是一位小数,一位小数表示什么意义呢?
把1平均分成10份,表示其中的几份,也就是表示十分之几。
2.理解两位小数的意义
(1).那0.01的意义是什么呢?
(2).如果还是把这张正方形纸看成1,要在这张正方形纸上表示0.01,你准备怎么表示。
把这张正方形纸平均分成100份,涂其中的1份表示0.01。
(3).课件演示,0.01可以表示哪个分数。仔细观察你除了看到0.01,你还能看到那个小数。
0.99写成分数是多少?0.99里有几个0.01。0.01和0.99合在一起是多少。1里有多少个0.01
(4).课件出示,你看到哪2个小数,分数是什么?
0.28和0.72合在一起是多少。
这些小数都是两位小数,两位小数表示什么意义。
把1平均分成100份,取其中的几份,也就是表示百分之几。
3.理解三位小数的意义
(1).照这样看三位小数表示?千分之几。
(2).三位小数最小的是谁?0.001表示什么意义。写成分数是什么?你能写一个最大的三位小数吗?0.999表示什么意义。0.001和0.999合在一起是多少。1里面有多少个0.001。
0.012写成分数是多少?写成小数是多少?
4.拓展四位小数、五位小数
(1).那四位小数表示什么呢?0.0123表示哪个分数。
(2).五位小数表示什么意义?写成小数是什么?
5.概括小数的意义
那什么是小数的意义呢?
引导学生归纳:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
三、分层练习,实质理解。
1.对口令
看来大家对小数的意义都已经基本掌握了,那我们一起来玩一个游戏,看谁学得扎实。
规则:老师出示小数,请你快速说出分数,老师出示分数,请你快速说出小数。
结合有单位的题目,0.80元、厘米、0.006米说一说表示的意义。
2.写小数
刚才我们在一张平面的正方形中找到了小数,看,在这个正方体中,涂色的部分能用哪个小数表示呢?
这个图形又可以用哪个小数表示?如果要表示2.43怎么办?
3.数轴上得小数
看、这是一条数轴,这两个点可以用哪个小数表示。
把数轴延伸,这两个点可以用哪个小数表示。2.35在哪里?从0向左看你还能找到哪些数。
4.通过本节课的学习你有什么收获?
虽然我们感觉掌握的还不错,但是伟大的数学家高斯曾说过“给我最大快乐的,不是已懂得的知识,而是不断的学习。”希望大家课后继续研究小数的其他知识
小数的意义教学设计10
【学习内容】
小数的意义和产生,课本50—51页内容。
【学习目标】
1、我能通过观察知道小数的产生。
2、我能通过分析明白小数的意义。
3、我知道小数的计算单位及单位间的进率。
【学习重难点】
小数的意义和计算单位及进率
【学习流程】
一、知识链接
1/、谈话引入:
我们已经初步认识了小数,小数是怎样产生的?小数的意义是什么呢?这节课我们就来学习小数的产生和意义。
二、探究新知。
1、探究活动:
认真阅读教材第50、51页内容,结合“导学案”中的学习提示,先自主探究,再在小组内相互交流,初步理解小数的产生和意义。
温馨提示:
(1)能你测量课桌的长度和宽度吗?测量时发现了什么?
(2)、你知道米尺是把1米平均分成了多少份吗?它的每一份用分数怎样表示?
(3)、你能用小数表示分母是10的分数吗?
(4)、你能用小数表示分母是100的分数吗?
(5)、你能用小数表示分母是1000的分数吗?
(6)、什么是小数,小数的计数单位是什么。
(7)、每相邻两个计数单位之间的`进率是多少。
(8)、小数的计算单位和分数的计数单位有什么不同之处。
2、我会总结:
(1)分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
(2)、每相邻两个计数单位之间的进率是()。
3、解决问题:
(1)0.457,每个数位上的数各表示几个几分之一?
(2)一个小数由5个1、3个0.1、6个0.01组成,这个小数是()
三、课堂巩固:
1、判断:
(1)0.40里面有4个0.01()(2)35克=0.35千克()
2、把小数改写成分数
0.90.090.0359
3、括号里能填几?你是怎么知道的?
(1)、0.3里面有()个,0.09里面有()个;0.08里面有()个。
(3)、找朋友:(用线把上下两组数连起来)
0.0450.130.00010.9
四、课堂总结:
这节课我们学习了什么?你知道了什么?你还有什么问题?
小数的意义教学设计11
教学目标:
1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。
2.经历探索小数意义的过程,培养归纳能力。
3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。
教学重难点:理解小数的意义和小数的计数单位。
教具准备:米尺、课件。
教学过程:
一、回顾导入
1.读一读信息(课件出示)想一想,这样写符合实际吗?
(1)老师的体重是565千克。
(2)小明的身高是145米。
(3)笑笑的数学测验成绩是935分。
2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?
3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。
二、探索新知识
1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?
指名测量,其他同学观看。
2.汇报测量结果。
3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。
4.出示米尺图。
上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?
5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?
十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?
6.出示米尺。
指着板书:有什么新发现?学生汇报。
7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?
让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。
学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。
8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。
小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……
进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。
三、巩固练习
第一层练习:分数小数互化。
第二层练习。
1.填空
(1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。
(2)1里面有( )个0.1和( )个0.01。
(3)0.52是由( )个0.1和( )个0.01组成的。
2.判断:
(1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )
(2)1毫米写成小数是0.01米。 ( )
第三层练习: 猜数游戏。
小明和小红的数各是多少?
四、总结
师生共同回顾本节课内容。
反思:
“小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。
小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的.概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。
在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。
引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。
最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。
反思这节课,也有一些地方预设的不够充分:
1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。
2.练习量较大,没有考虑学生实际。
“课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!
小数的意义教学设计12
教学目标
1、进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题。
2、提高学生计算能力和估算能力。
3、培养学生认真计算、自觉检验的好习惯。
教学重点
正确、熟练地计算较复杂的'小数乘法。
教学难点
根据小数乘法的意义正确判断积与被乘数的大小关系。
教学过程
一、检查复习
(一)口算
0.9×6
7×0.08
1.87×0
0.3×0.6
0.24×2
1.4×0.3
1.6×5
4×0.25
60×0.5
7.8×1
(二)说出下面各算式表示的意义
2.4×0.8
1.36×4
2.58×0.2
二、指导探索
(一)教学例3 0.056×0.15
1、学生独立计算,指名板演。
2、指名说一说计算过程。
教师提问:乘得的积的小数位数不够时,该怎么办?
3、指导学生验算方法
教师提问:怎样检验小数乘法计算是否正确?
(运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)
(二)教学例4
一个奶牛场八月份产奶18.5吨。九月份的产量是八月份的2.4倍。九月份产奶多少吨?
1、独立解答、
2、教师提问:
(1)你是根据什么列式的?(一倍数×倍数=几倍数)
(2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)
3、比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?
4、练习:不计算,说明下面各算式中积与被乘数的关系、
10.8×0.9
2.4×1.8
50×0.36
0.48×0.75
讨论:在什么情况下,积小于第一个因数?
在什么情况下,积等于第一个因数?
在什么情况下,积大于第一个因数?
5、小结:当第二个因数比1小时,积比第一个因数(零除外)小;
当第二个因数等于1时,积等于第一个因数(零除外);
当第二个因数比1大时,积比第一个因数(零除外)大;
6、练习:不计算,判断下面各题的结果是否正确、
0.72×0.15=1.08 0.36×1.8=0.648
三、质疑小结
(一)今天你都有什么收获?
(二)对于今天的学习还有什么问题?
教学设计点评
教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。
小数的意义教学设计13
教学内容:
人教版义务教育课程标准实验教科书数学四年级下册第50-51页。
教学目标:
1、理解小数的产生和意义,认识小数的计数单位及进率。
2、通过抽象概括,培养学生初步的逻辑思维能力。
3、结合教材和教学,有机渗透“实践第一”与“事物之间是普遍联系”的辩证唯物主义观点的启蒙教育。
教学重、难点:
教学重点:概括小数的意义,认识其计数单位和进率。
教学难点:理解小数的意义,掌握分数单位与小数单位之间的关系。
课前准备:请学生测量自己周围的物体,如课桌、黑板、门窗、大幅挂图等的长与宽(或高),整理收集好数据。
教学过程:
一、导入
1、我们数学课本的定价是多少元?(板书:5.10元)小明的身高是1.21米,小兰的体重是38.2千克(板书:1.21米、38.2千克)。你们知道这些都叫什么数吗?我们在哪册课本中学过?小数是怎样产生的?
2.请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读课本内容。
3.师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书:小数的产生)但是,小数的意义又是什么呢?这节课,我们就来着重研究它。
二、新授
1、3分米是怎样写成小数0.3米的呢?同学们请看(出示一把米尺),这把米尺的总长是1米,把它平均分成10份。每份是多少?1分米是几分之几米?把1/10米写成小数是多少米?小数点右边有几位小数?左边的数位上写什么?(板书:0.1米)
那么,3分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(板书:3/10米、0.3米)7分米是几分之几米?写成小数是多少米?小数点右边有几位小数?(最后让学生把测量实物得到的数据也写成以米为单位的小数,同桌互相检查评改)
归纳小结:把分米数写成以米为单位的数,得到的是十分之一或十分之几米的数,可用一位小数来表示。(板书:一位小数)
2、把1米平均分成100份,每份就是1小格,这1小格是多少?写成分数是几分之几米?把它写成小数是多少米?小数点右边有几位小数?左边写什么?(板书:1厘米、1/100米、0.01米)
启发学生类推:谁能说出3厘米、6厘米各用分数和小数来表示是多少米?(同时让学生在书上的括号里写出来,并指名一生板演填空)各有几位小数?3和6写在小数点右边的哪位上?(再让学生把测量实物得到的数据写成以米为单位的小数,同桌互相检查评改)
归纳小结:把厘米数写成以米为单位的数,得到的是百分之一或百分之几米的数,有几位小数?(板书:两位小数)
3、把1米平均分成1000份,每份是多少?(板书:1毫米)(用投影仪显示1厘米中的“毫米”小格)这1毫米是几分之几米?怎样写成小数?小数点右边有几位小数?(指名一生板演填写,其他学生写在练习本上)6毫米、13毫米怎样写成分数和小数?小数点右边的'第一、第二、第三位上。各表示几个1/1000米呢?
引导小结:把毫米数写成以米为单位的数,得到的是怎样的分数?能写成几位小数呢?(板书:三位小数)
(布置学生将收集到几分米、几厘米、几毫米的数写成以米为单位的小数,然后互相检查评改)
4、如果继续分下去,得到1/10000、1/100000……的数。能写成几位小数?你会写吗?试一试,再互相检查。
5、归纳概括。用投影仪显示下列问题。
在上面的例子中,这些分数都能直接写成小数,这些分数的分母分别是多少?
表示十分之几、百分之几、千分之几……的分数,它的分数单位各是多少?每相邻两个计数单位间的进率是多少?(如:1/10里面有多少个1/100?)与整数的进率有什么联系和区别?
像这种分母是10、100、1000……且相邻的计数单位的进率是10的分数,可以怎样依照整数的写法写成小数?
因为整数左边数位上的数是右边相邻数位上的数的10倍,所以小数数位也可以从左到右由高位到低位排列,在整数与小数部分之间用小圆点(小数点)隔开来。
小数的 计数单位有哪些?同分数单位有什么联系与区别?(引导学生对照板书内容想一想、比一比、议一议,然后回答)
6、让学生阅读课本上有关的内容后,完成课本上“做一做”的练习,最后让同桌学生互相说说:自己测量得到的数据是怎样写成小数的?
三、全课总结、质疑
四、巩固练习
1、口答:在5/10、1/2、1/100、1/15、1/80等数中,哪些分数能直接写成小数?为什么?写成的小数是多少?
2、口答:判断对错,错的要订正。
(1)11/1000写成小数是0.011米。
(2)0.18是18个0.1。
(3)0.33的计数单位是百分之一。
(4)0.57表示百分之五十七。
3、抢答。(看到小数答相等的分数,看到分数答相等的小数)
0.5 16/100 0.25 4/1000 0.075
4、书面作业。(略)
5、机动题:在下面的○里填上“>”、“<”或“=”。
8/10○0.08 96/100○0.95
4角○0.4元
6、思考题:113毫米、15厘米用小数表示出来是多少米?
[评析:小数的意义是本节课的教学重点,由于小学生的年龄和认知特点,对于小数的意义无论在表述上,还是在理解上都有一定的困难。在设计教学过程时,本课有如下特点:
1、充分感知,使学生明确小数的产生源于实践。
认知规律告诉我们,要使学生形成表象,加强感知是必不可少的。教学中,教师首先从贴近学生生活实际的身高、体重、书本价格的表示中。引出了小数在实际生活中有着广泛的应用,使学生明白小数的产生源于生活实践,激发了学生学习小数的兴趣和强烈的求知欲望。接着又通过测量门窗、黑板、课桌、大幅挂图等实物的长度和宽度的实际操作活动,使学生明白不能得到整米数的结果,这时也常用小数来表示。通过操作感知,使学生明确由于日常生活、生产的需要,从而产生了小数,渗透了“实践第一”的辩证唯物主义观点的启蒙教育。
2、凭借表象。展开联想推理。
建立表象后,以表象为依托,通过观察米尺,联系 旧知,结合采集的数据有层次地展开联想推理。教师引导学生通过回忆、复习,把分米数、厘米数改写成用分数形式表示的米数,再改写成小数表示的米数。从而说明十分之几的数用一位小数表示,百分之几的数用两位小数表示。把毫米数改写成米数时,通过知识迁移,引导学生写出三位小数,并类推出千分之几的数用三位小数表示。在教学中,通过“观察分析实例一联想类推一结论”的过程,找到了分数(特定分母)与小数在数位、定义、进率等方面的实质性联系,为小数意义的抽象概括作了充分的铺垫。这样,学生不但学得轻松,而且培养了学生分析、联想类推的能力。
3、培养学生抽象概括的能力。建立新的认知结构。
教师不失时机地充分利用教材,引导学生通过“想、议、比、读”等方法,抽象概括出小数的意义。在这个过程中,教师主要抓住三点:
(1)抓住位数的扩展规律这根主线,界定能仿照整数写法的特定分数的范围;
(2)通过小数的特征,建立抽象的概念——小数的意义;
(3)联想、分析、概括小数的意义。在学生有了充分的感性认识的基础上,通过自学课本及教师的启发。逐步理解小数意义的各个要素。
然后教师设疑:
(1)能直接写成小数的分数,它的分母是多少?
(2)表示其中一份的分数各是多少?相邻两个计数单位间的进率是多少?为什么?与整数相邻的计数单位间的进率有什么联系和区别?
(3)像这种分母是10、100、1000……的分数。可以怎样依照整数的写法写成小数?
(4)小数的计数单位有哪些?让学生借助教材分析讨论,使学生在回顾知识的同时。加深对知识的理解。学生对小数的意义有了潜在的理解后,教师及时地引导学生抽象概括,使学生学习小数的意义有一完整、清楚的认识,能够较完整地表达出小数的意义。形成新的认知结构。
4、把握训练内容,巩固强化新知。
练习不仅是内化和巩固对知识的理解。而且是形成基本技能与发展智力的重要手段。本节课紧紧围绕小数的意义和小数的计数单位两方面,设计多层次的练习。在练习中注意思维步骤的物化,按照“一看、二比、三写、四查”的步骤思考和运 作,从而有效地培养了学生良好的学习习惯。
同时,多媒体动态直观的演示、正确新颖多渠道的反馈形式、风趣生动的教学语言以及简洁科学的板书设计,牢牢吸引了学生的注意力,使教学目标顺利达成。
小数的意义教学设计14
教学内容
教材第34、第35页的内容及第36页练习九的第4—10题。课型新课
教学目标
1、认识小数的小数部分的数位、计数单位和数位顺序表。
2、掌握小数的读写方法会正确读写小数。
3、经历小数的读写过程,体验迁移、比较的学习方法。
4、感受正活中处处有数学,培养学生自主学习的意识和创新精神。
教学重点
会读、写小数。
教学难点
理解小数部分的数位顺序表。
教具学具
多媒体课件
教学设计个性化设计及反思
一、情境导入
师:同学们,你们知道陆地上最高的动物是什么吗?
课件出示教材情境图。
师:请仔细观察,从这幅图中你得到什么信息?
(老师相继吸入出数字1.8、5.63和12.378)
师:请大家仔细观察这些小数有什么共同特征?它们都是由哪几部分组成的?
生:这些数都多了一个点。
师:对,这个圆圆的点就是小数点,它把小数分成了整数部分和小数部分。这就是我们今天要学习的内容—小数的读法和写法。(板书课题:小数的读法和写法)
二、自主探究
1认识小数的组成和数位顺序表。
师:在小数12.378中,2在哪位上?它表示什么意义?你还记得吗?
生:2在个位上,它的计数单位是一,表示2个一。
师:3、7、8分别表示什么意义呢?
生:3在12.378中的十分位上,表示3个十分之一。
师:对,3在十分位上,表示3个十分之一。
师:谁能说出7、8表示的意义?
学生小组讨论,教师组织汇报。
生1:7在百分位上,表示7个百分之一。
生2:8在千分位上,表示8个千分之一。
师:现在你能把下面的.数位顺序表补充完整吗?
(学生单独补充,全班交流)
师生共同总结:小数是由整数部分,小数点,小数部分组成的。在小数里,小圆点叫小数点,它的左边是整数部分,从右往左数一次是个位、百位、千位……小数点的右边是小数部分,从左往右依次是十分位、百分位、千分位……这两边都有省略号,表示后面还有很多数位。
师:你能说出这些数里面“4”所表示的意义吗?
课件出示:40.38、3.4、0.24、1.004)
2、小数的读法。
师:今天,老师还给同学们带来了世界上最大的古钱币。
出示古钱币图
师:哪位同学可以尝试着读出它的高、厚、重。(0.58、3.5、41.47随即板书)
生:0.58读作零点五十八。
师:同学们,他读的对吗?
生:不对吧,和58的读法一样了。
师:是的,读小数时,小数部分从左往右是依次读出每一个数字。谁还想尝试着读出每一个数。
生:零点五八、三点五、四十一点四七。
师:对,读小数时,小数点就读作“点”,小数部分从左往右依次读出每个数字。
师:谁能用自己的语言说说小数该怎样读?然后读出教材第35页“做一做”的第一题。
(学生尝试读出,全班交流汇报)
师:读数时,如果小数部分有“0”,你是怎样处理的?
生:小数部分的0也是依次读出,和整数部分的0的读法有些不同,有几个0就读几个0.
3、小数的写法。
师:同学们,累了吗?现在咱们一起听一段广播吧。
课件出示并播放下面内容。
据国外专家试验研究预测:到2100年与1900年相比,全球平均气温将上升一点四至五点八摄氏度,平均海平面将上升零点零九至零点八八米。
师:听了上面的广播,你能写出广播里的小数吗?
(学生尝试写,然后板演或者汇报)
生:一点四写作:1.4,五点八写作:5.8.
师:上面两个小数的写法正确吗?你能说说怎样写小数吗?
生:写小数时,整数部分按照整数部分的写法去写,小数点写作“.”,小数部分读几就写几。
师:谁还想尝试写出后面的两个小数?
生:零点零九写作:0.09零点八八写作:0.88
师:写小数时,如果小数部分有零,该怎么办呢?
生:写小数时,小数部分读了几个零,就写几个零。
师生共同总结:写小数时,整数部分按照整数部分的写法来写(整数部分是零的写作“0“),小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。
三、探究结果汇报
师:有关小数读写知识,通过上面的探究,你知道了哪些?
生1:一个小数由整数部分、小数点和小数部分三部分组成。
生2:小数部分从小数点向右数分别是十分位、百分位、千分位……计数单位分别是0.1、0.01、0.001……
生3:读小数时,小数部分从左向右依次读出每一个数字,有几个0,就读几个零。
生4:写小数时,整数部分按照整数部分的写法来写(整数部分是零的写作“0”),小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。
四、师生总结收获
师:通过本课时的学习,同学们有哪些收获?
生:小数的读法和写法与整数的读法和写法类似,可以参照整数的读写法来读写小数。
师:对,在数学上这叫知识的迁移,它们完全相同吗?
生:不是完全相同,有0的时候就不一样。
师:对,同学们学习新知识时要学会从相同中寻找不同。
小数的意义教学设计15
教学目标:
(一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。
(二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(三)培养学生的观察、分析、推理能力。
教学重点和难点:
在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及相邻单位间的进率,既是本课的重点,也是本课的难点.
教学过程:
一、小数的产生。
1、谈话导入
问:在三年级时我们初步认识了小数,你能说一个小数吗?
(根据学生的回答,选一部分板书)
问:你还知道小数的哪些知识?
2、那小数是怎样产生的呢?(出示课件)
①先出示课件,让学生观察,哪些能用整数表示?哪些得不到整数的结果?
②小结:在测量时、计算时及物体的单价,有的能用整数表示,有的得不到整数的结果。像这样得不到整数结果的例子在生活和学习中有很多,聪明的人们于是想到了用分数、小数来表示,于是小数便产生了。(板书:小数产生)
二、小数的意义。
1、认识一位小数
师:0.1米还可以怎么表示?
生1:用分数表示是1/10米
生2:1分米
师:你是怎么想的?
生:把1米平均分成10份,每一份是1分米,用分数表示是1/10米,用小数表示是0.1米。
师:0.3米是几分米?用分数表示是多少米,用小数表示是多少米?(生略)
师:0.8米是几分米?用分数表示是多少米,用小数表示是多少米?(生略)
师:像0.1、0.3、0.8……这样的小数,小数点后面只有一位数,这样的小数叫一位小数。
(板书:一位小数)
2、认识两位小数
师:0.01米还可以怎么表示?
生1:用分数表示是1/100米
生2:1厘米
师:你是怎么想的?
生:把1米平均分成100份,每一份是1厘米,用分数表示是1/100米,用小数表示是0.01米。
师:0.05米是几厘米?用分数表示是多少米?(生略)
师:0.09米是几厘米?用分数表示是多少米?(生略)
师:像0.01、0.05、0.09……这样的小数,小数点后面有两位数,这样的小数叫(两位小数)。
(板书:两位小数)
3、认识三位小数
师:0.001米还可以怎么表示?
生1:用分数表示是1/100米
生2:1毫米
师:你是怎么想的?
生:把1米平均分成1000份,每一份是1毫米,用分数表示是1/1000米,用分数表示是1/1000米。
师:0.007米是几毫米?用分数表示是多少米?(生略)
师:0.012米是几豪米?用分数表示是多少米?(生略)
师:像0.001、0.007、0.012这样的小数,小数点后面有三位数,这样的小数叫(三位小数)。(板书:三位小数)
师:分母是几的分数能写成四位小数?(1000)
分母是几的分数能写成五位小数?(10000)
师:依次类推(板书:......)
4、概括小数的意义
师:(结合板书)这些都是同学们刚刚写出的分数和小数,不同的分数可以写成相对应的小数,例如:1/10可以写成0.1;
5/100可以写成0.05;12/1000可以写成0.012。
那么分数和小数之间的这种联系,谁能用自己的话来说一说呢?
师:下面分小组说一说你们各自的想法。
(汇报讨论结果。)
组1:分母是10、100、1000的分数可以用小数来表示。
组2:十分之几是一位小数,百分之几是两位小数,千分之几是三位小数……。
组3:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。
组4:分母是10、100、1000的分数可以用小数来表示,比如说十分之几可以用一位小数来表示,百分之几可以用两位小数表示,千分之几可以用三位小数表示……。
小结:我们一起来看板书,刚刚你们已经说到了分母是10的分数可以用一位小数来表示,分母是100的分数可以用两位小数来表示,分母是1000的分数可以用三位小数来表示,用一句话概括就是——分母是10、100、1000……的分数可以用小数表示。
这就是。(板书:小数的意义)
5、认识小数的计数单位。
师:0.3里面有()个0.1 0.8里面有()个0.1
生1:0.3里面有(3)个0.1
生2:0.8里面有(8)个
师:像0.3、0.8这样的一位小数都是由许多个0.1组成的,我们就说0.1是一位小数的计数单位,用分数表示是十分之一。
师:那么你们猜一猜,两位小数的计数单位是什么?
生:0.01是两位小数的计数单位,用分数表示是百分之一。
师:那三位小数的计数单位是(?)
生:0.001(千分之一)
师:那四位小数的计数单位是(?)
生:0.0001(万分之一)
师:依次类推(板书:......)
6、认识进率
(结合板书)一位小数的计数单位是0.1,两位小数的计数单位是0.01,三位小数的计数单位是0.001,那0.1里面0.1有()个0.01
0.1里面有()个0.001(课件出示)
生:0.1里面有(10)个0.01
0.01里面有(10)个0.001
师:为什么0.1里面有(10)个0.01,0.01里面有(10)个0.001,同学们可以结合板书去思考?(四人一小组进行讨论)
生:讨论
生:汇报
生1:0.1米=1分米0.01米= 1厘米1分米= 10厘米
所以0.1里面0.1有(10)个0.01......
师:0.1里面有(10)个0.01,0.01里面有(10)个0.001,依次类推(板书:......)
用一句话可以怎么概括?
师:(课件出示)每相邻两个计数单位之间的进率是10
师:(结合板书)0.1里面有(10)个0.01,0.01里面有(10)个0.001,那0.1里面有()个0.001?
生:0.1里面有()个0.001?
师:你们是怎么想的?生:......
四、巩固练习。
师:从上课开始到现在,我就发现同学们的推理能力特别强,那剩下的时间我们就一起去闯智慧关,有没有信心,接受挑战?(有)
师:请看大屏幕,第一关(课件出示)
1、填一填(书51页做一做)
2、哪两只手套是一副?用线连一连。(书55页第2题)
第二关
3、在()里可以填几
()个0.01是0.1 0.8里面有()个0.1
0.35里面有()个0.1和()个0.01组成的
0.2里面有()个0.1,有()个0.01,有(),个0.02
4、想一想
1元4角2分=()元2.56元=()元()角()分
35厘米=()米=()分米0.68米=()分米=()厘米
第三关
5、在括号里填上适当的分数和小数
五、课堂小结。
这一节课我和小朋友合作得非常成功,我相信每一个同学都有很多的收获,谁先来说一说?
四年级数学《小数意义》教学设计6
教学内容:
人教版数学四年级下册P50-51
内容分析:
本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。
小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”
教学设想:
三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的`计数单位间的进率是10。通过一系列练习巩固认识小数的意义。
教学目标:
1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。
2、认识小数的数位和计数单位。
3、知道小数每相邻两个计数单位间的进率是10。
教学重点:
理解小数的意义
教学难点:
小数每相邻两个计数单位间的进率是10
教学过程:
课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。
下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果
课件出示学案内容
一.复习导入
(出示一位学生的分类结果)
师:请这位同学来回答,你把这些小数分成了几类?
生:三类
师:你是怎么想的?
生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类
师:你们分的和他一样吗?
小数点右边的部分是小数部分(板书补充数位顺序表)
小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?
生:两位小数
师:三位的呢?
生:三位小数
师:今天我们一起来探究小数的意义(板书:小数的意义)
【设计意图:三年级已经初步认识了小数,会写以米、元作单位的小数,并理解其意义。在此基础上,也能用小数表示面积图和线段图中给定部分,因此利用课前复习关于小数的知识,为本节课的学习做准备】
二、新授
(一)认识一位小数
1、出示尺子图
师:看这幅图,你是怎样填的?
生:分数:1/10米,小数:0.1米
师:你是怎么想的?
生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。
师:谁再来说一说?
2、出示面积图
师:再看这个图,你还能用分数和小数表示吗?
生:分数是1/10,小数是0.1
师:为什么它也能用0.1表示?
生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.
师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1
(出示课件:1/10=0.1)
3、出示第二幅面积图
师:那现在涂色部分是多少?
生:分数是3/10,小数是0.3
师:0.3表示什么意思?
生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3
师:0.3里面有几个0.1?
生:0.3里面有3个0.1
4、出示
师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义
(同桌互说)
汇报:
师:第一个谁来说?
生:分数是6/10,小数是0.6
师:0.6里面有几个0.1?
生:0.6里面有6个0.1
师:第二个是多少?
生:分数是9/10,小数是0.9
师:0.9表示什么?
生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9
师:0.9里面有几个0.1?
生:0.9里面有9个0.1
5、课件出示
师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?
生:分母都是10,都是平均分成了10份得到的
师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?
生:一位小数
师:十分之几的数用一位小数表示(课件出示)
给同桌读一读这句话
6、课件出示
师:我们再回到这个图,现在涂色部分是0.9,也就是9个0.1,如果再添一份是多少?
出示
生:10/10、1
师:十分之十就是1
1里面有几个0.1?
生:1里面有10个0.1(课件出示)
7、出示
师:这个图怎么表示?
生:1.2
师:1.2里面有几个0.1?
生:1.2里面有12个0.1(课件出示)
8、出示
、
师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)
0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)
十分之一所占的数位就是十分位(补充数位顺序表)
师问:十分位的计数单位是什么?
生:十分之一
师:十分位所占的数位是?
生:十分位
师:老师在说一个小数:0.8
8在哪一位?(生:十分位)
它的计数单位是什么?(生:十分之一)
有几个这样的计数单位?(生:8个)
【从直观的尺子图入手到较抽象的面积图,在对比中理解0.1的意义,逐渐递进,在不断理解几个0.1的基础上,认识一位小数的计数单位和数位。在老师的引导下,问题的深入中帮助学生理解】
(二)认识两位小数、三位小数
1、自主探究
师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?
接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。
先请一位同学读一读
学生活动
2、练习反馈
师:同学刚才讨论的很积极,这几个问题都解决了吗?
那老师出几个问题考考大家
3、出示
师:涂色部分是多少?
生:分数是1/100,小数是0.01
师:你怎么想的?
生:把正方形平均分成100份,其中的一份是1/100,小数是0.01
师:谁再来说一说?
出示
师:这一个呢?
生:分数是4/100,小数是0.04
师:0.04里面有几个0.01?
生:有4个0.01
出示
师:这是多少?
生:分数是21/100,小数是0.21
师:0.21里面有几个0.01?
生:有21个0.01
4、认识两位小数的计数单位和数位
师:两位小数的计数单位是什么?(生:0.01)
也可以说是百分之一(补充数位顺序表)
百分之一所占的数位是?(生?百分位)(补充顺序表)
两位小数表示的是?(生:百分之几的数)
5、三位小数的意义
出示
师:再看这个图,涂色部分是多少?
生:分数是1/1000,小数是0.001
师:0.001表示什么?
生:把一个物体平均分成1000分,取其中的一份,就是1/1000,也就是0.001
师:谁再来说?
出示:0.125
师:再看这个数,是多少?(生:零点一二五)
没有图了,你还能说出他的意义吗?
生:把一个物体平均分成1000份,取其中的125份就是125/1000,用小数表示是0.125
师:0.125里面有几个0.001?
生:有125个
6、三位小数的计数单位和数位
师:三位小数的计数单位是什么?(生:0.001)
也可以读作千分之一
千分之一所占的数位是?(生:千分位)
(补充数位顺序表)
三位小数表示的是什么数?(生:千分之几的数)
【设计意图:在认识一位小数时,由教师带领学习,而在认识两位小数和三位小数时,则放手让学生自主探究,利用认识一位小数时的学习经验进行学习】
7、延伸
师:那四位小数呢?(生:万分之几)
计数单位是?(生:万分之一)
往下说的完吗?(生:说不完)
我们可以用省略号表示(补充数位顺序表)
8、拓展
师:小数部分有没有最小的计数单位?
生:有
师:有不同意见吗?
生:没有最小的计数单位,因为我们把物体平均分成10份,又平均分成100份,1000份,越分越小
师:你们听懂了吗?
想一想,0.1是怎么得到的?
生:平均分成10份,1份是0.1
师:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,随着分的分数越来越多,一份就越来越小,如果我继续分下去能分完吗?越往下分越小,那有没有最小的计数单位?
生:没有最小的计数单位。
师:小数部分有没有最大的计数单位?
生:十分之一
9、修改数位顺序表
师:拿出你刚才写的数位顺序表,看一看你写的对吗?
有问题的修改一下
(三)计数单位间的进率
1、出示:
师:第一个图的涂色部分用小数表示是?(生:0.1)
第二个图的涂色部分用小数表示是?(生:0.10)
你发现了什么?
生:两个图的涂色部分一样大
师:也就是他们大小相同。(出示:0.1=0.10)
有什么不同吗?
生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份
师:对不对?第一个平均分成了10份,取其中的一份,第二个平均分成100份,取其中的10份
第一个表示1个0.1,第二个表示10个0.01
你还有什么发现?
生:10个0.01是0.1(板书)
师:一起读一遍
2、出示(由1个0.1增加到10个0.1)
生一起数到1
师:你发现了什么?
生:10个0.1是1
师:(板书)再读一读
3、小结
师(指数位顺序表):你有什么发现?
生:进率是10
师:对,小数和整数一样,相邻两个计数单位间的进率是10
四年级数学《小数意义》教学设计7
一、教学目的:
1、在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
2、在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
3、在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
二、教学重难点:
1、理解小数的意义,理解小数的计数单位及它们间的进率。
2、理解小数的计数单位及它们间的进率。
三、教学准备:
米尺、表格纸、多媒体课件等。
四、教学过程
(一)创设情境,直入新课
教师:1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度能有多少?
2.大家估计得对不对呢?让我们一起用直尺来验证一下。
学生:实际测量。
教师:谁愿意把你测量的结果告诉大家?
学生:汇报预设,学生1:我测量课桌面的长度是120厘米。学生2:我测量课桌面的长度是1米2分米。……
教师:课桌的长度如果以米为单位就是1.2米。(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。(2)认识小数吗?在哪儿见过小数?(3)出示课件超市的商品价格,书店的书本价格。今天我们一起学习小数的意义。
(设计意图:联系生活实际提出问题,让学生动手操作,在进行测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必然性。)
(二)实践入手,探究意义
1.认识一位小数。
教师:各小组观察米尺,把1米平均分成10份,每份是多长?
学生:1分米。
教师:把1分米改写成用“米”做单位的分数怎么表示?说一说你是怎么想的?
学生:交流想法。十分之一米
教师引导学生回答:1分米,也就是十分之一米,用小数表示就是0.1米。
教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。学生独立完成,教师巡视。交流分享学生的思考过程。
教师:出示课件:1、线段平均分成10份,取3份,用小数表示。2、正方形平均分成10份取8份,用小数表示。3、分母是10的分数对应的小数。仔细观察白板,你发现了什么?
学生:回答。
教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。
2.认识两位小数。
教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?
学生:先独立完成,再合作交流。
教师:观察每组中的分数和小数,说一说你发现了什么?
学生:分数的分母都是100。学生:小数点的右面都有2个数字。教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。
教师:出示课件:1、把正方形平均分成100份取35份,用分数和小数表示。
设计意图:引导学生根据一位小数表示十分之几,推测出两位小数和什么样的小数有关,有意识地促进迁移,体验成功乐趣,培养学生的学习兴趣和信心。
3.小数的意义。
教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。
学生:先独立研究,再汇报交流结果,教师根据学生回答适时板书。教师:通过你的研究,你发现了什么?
学生:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是千分之一米,写成小数就是0.001米。
学生:三位小数就表示千分之几。
教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?学生:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。
教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?学生:四位小数表示万分之几,五位小数表示十万分之几。结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?
学生:我认为分母是10、100、1000、10000等的分数可以用小数来表示。
学生:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
教师小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
4.认识小数的计数单位。
教师:大家都知道分数中,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?学生:交流。
教师:根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1,0.01,0.001……
5、小数相邻计数单位之间的进率
教师:引导学生1分米=0.1米。1厘米=0.01米。1分米=10厘米,那么0.1米=(10个)0.01米,0.1=(10个)0.01.……得出:每相邻的两个计数单位之间的进率是十。
(设计意图:引导学生从“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,按循序渐进的认知规律,先讲解,接着放手让学生独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,总结小数相邻计数单位之间的进率是十。锻炼了学生的能力,破解了重难点,。)
(三)巩固应用,强化认知
1.第33页做一做。
2.第36页练习九第1题。
3.课件:填空:0.7里面有7个();再增加()个0.1就等于1。0.23里面有()个0.01。34个0.001是();34个0.01是();34个0.1是()。
4.在括号里填上适当的小数。学生先独立完成,教师再让学生汇报答案,集体评议。
(设计意图:用不同层次的练习,让学生在对比练习的中加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用,帮助学生根据小数意义理解生活中常见的小数所表示的含义。)
(四)总结巩固,拓展延伸
教师:今天这节课我们学习了哪些知识?你有什么收获?
教师:出示课件,介绍对小数发展具有杰出贡献的两位数学家——刘徽,朱世杰。
(设计意图:通过问题帮助学生梳理本节所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。)
【小数的意义教学设计】相关文章:
《小数的意义》教学设计07-28
小数的意义教学设计06-22
(优)《小数的意义》教学设计07-28
小数产生和意义教学设计06-16
《小数的意义》教学设计常用(15篇)07-28
《小数的意义》教学设计【集合15篇】07-28
小数的意义教学设计集合(15篇)04-23
小数乘小数教学设计08-16
《小数乘小数》的教学设计10-26
小数乘小数的教学设计09-15
