登录 注册

高一对数函数教案课件

时间:2017-11-22 编辑:酉旭 手机版

  【学习引导】

  一、自主学习

  1. 阅读课本 练习止.

  2. 回答问题

  (1)课本内容分成几个层次?每个层次的中心内容是什么?

  (2)层次间的联系是什么?

  (3)对数函数的定义是什么?

  (4)对数函数与指数函数有什么关系?

  3. 完成 练习

  4. 小结.

  二、方法指导

  1. 在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

  2. 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质

  【思考引导】

  一、提问题

  1. 对数函数的自变量和函数分别在指数函数中是什么?

  2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?

  3.是否所有的函数都有反函数?试举例说明.

  二、变题目

  1. 试求下列函数的反函数:

  (1) ; (2) ;

  (3) ; (4) .

  2. 求下列函数的定义域:

  (1) ; (2) ; (3) .

  3. 已知 则 = ; 的定义域为 .

  【总结引导】

  1.对数函数的有关概念

  (1)把函数 叫做对数函数, 叫做对数函数的底数;

  (2)以10为底数的对数函数 为常用对数函数;

  (3)以无理数 为底数的对数函数 为自然对数函数.

  2. 反函数的概念

  在指数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ;在对数函数 中, 是自变量, 是 的函数,其定义域是 ,值域是 ,像这样的两个函数叫做互为反函数.

  3. 与对数函数有关的定义域的求法:

  4. 举例说明如何求反函数.

  【拓展引导】

  一、课外作业: 习题3-5 A组 1,2,3, B组1,

  二、课外思考:

  1. 求定义域: .

  2. 求使函数 的函数值恒为负值的 的取值范围.

  撰稿:熊秋艳 审稿:宋庆

  参考答案

  【思考引导】

  二、变题目

  1. (1) (2) (3) (4)

  2. (1) (1,+) (2) ( ,+) (3)

  3. , (0,+)

  【拓展引导】

  当 时, 的取值范围是

  当 时, 的取值范围是

  【总结】2013年数学网为小编在此为您收集了此文章高一数学教案:对数函数,今后还会发布更多更好的文章希望对大家有所帮助,祝您在数学网学习愉快!

[高一对数函数教案课件]相关文章:

1.高一数学对数函数及其性质教案

2.高一数学教案对数函数及其性质

3.高一班会主题课件教案

4.高一班会课课件教案

5.高一地理教案和课件

6.高一化学课件教案

7.对数函数的图像与性质高一数学教案

8.高一地理必修一教案课件

9.高一的音乐教案

10.高一音乐教案