我要投稿 投诉建议

《圆的周长》教学设计

时间:2025-10-06 10:24:10 教学设计 我要投稿

《圆的周长》教学设计【常用15篇】

  作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的《圆的周长》教学设计,仅供参考,欢迎大家阅读。

《圆的周长》教学设计【常用15篇】

《圆的周长》教学设计1

  教学内容:新课标人教版小学数学六年级上册第四单元p62----64页

  学习目标:

  知识与技能: 理解圆周率的意义,掌握圆的周长的计算公式。

  过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

  感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育

  其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。

  教学重难点和关键:

  重点:推导圆周长的计算方法。

  难点:学生以合作实践,讨论交流的方式探究圆周率的含义。

  关键:理解圆的周长与直径的关系。

  教学具的准备:

  多媒体课件,模型圆,几个直径不同的圆形,线、直尺等。

  教学过程:

  (一)复习铺垫

  出示课件(广场,找学过的平面图形)为理解圆周长的含义做好铺垫。

  (二)教学新知

  1.在情境中内化概念

  (1)由情境图,(课件出示广场图从中找学过的平面图引入新课。生,找出了圆。师,如果沿圆形喷水池走一周的长度,实际就是求圆的什么呢?生:周长。师:上节课大家对圆,有了很多的了解,今天我们继续探究有关圆的知识。)(板书:圆的周长通常用字母C)

  同学心里已经知道圆的周长指的那部分,那你们拿出自己的圆片,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?

  师生共同小结:围成圆的曲线的长是圆的周长。

  既然圆的周长是曲线那能不能用直尺直接测量呢?

  2、测量圆的周长

  (1)、这条曲线的长度你有没有办法测出它的长度呢?(让学生独立思考10秒左右)

  (2)、然后四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)

  (3)、小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(用滚动、绕绳的方法)。(结合学生的方法配以课件演示)

  课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)

  (板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的'很好。

  (4)、今天老师也带来了圆,想请一位同学上来测量一下,谁愿意?

  (5)、演示:转动的风车,形成圆形,问:你怎么不量呢?(这个圆会动,很难测量……如果把地球近似地看成一个球,绕赤道一周的长度是多少,这一周的长度你能测量出来吗?

  (6)、小结:看来象这样动态的圆或很大的圆测量其周长确实存在很大的困难,这就需要我们探究出一种像长,正方形周长的计算公式一样普遍使用的方法来解决圆周长的问题。

  3.在探究中理解公式(探究圆周长的规律)

  (1)设疑激思

  同学们想一想正方形的周长和什么有关系?(边长)哪圆的周长又与什么有关呢?( 到底是不是这样呢?我们来看一个实验。)(出示课件 电脑演示:从小到大依次出示2个虚圆)看来圆的周长的确与它的半径有关,与半径有关也就与直径有关,到底有什么样的关系这个问题要同学们自己去发现,请同学们用我们上面的滚动法或绳测法测量手中圆的周长,并算出周长和直径的比值填如下表.)

  测量对象

  圆的周长(厘米)

  圆的直径(厘米)

  周长÷直径=

  交流实验报告单,得出结论。

  师:哪个小组愿意把你们组填写的表汇报一下。(生报数师填表)从他们汇报的数据,同学们发现了什么吗?

  生:直径与周长的比值是三点多。

  师:其他小组有不同意见或补充吗?

  生;虽然圆的大小不一样,但我们算得周长也是直径的3倍多一些。

  师:凡是通过测量计算发现你的圆周长是直径的3倍多一些的同学请举手。

  师:这说明圆的周长除以直径的商是有规律的。在我们所测量的这些圆中,每个圆的周长都是直径的3倍多一些!如果再换成其他的圆是不是也有这样的规律?请同学们看电脑演示。

  通过观察的确是这样,师:同学们真了不起,刚才,同学们测量了大小不同的圆,但却有相同的发现。(圆的周长是它直径的三倍多一些) (板书:圆的周长总是它的直径的3倍多一些。)

  (2)认识圆周率

  ①、实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。

  ②、听了这个故事,你有哪些感受?(我自豪,我骄傲。太了不起了,)师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。

  ③、师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。

  “圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。

  根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)

  ③ 、同学们通过自己的努力得出了求圆周长的公式,要求圆的周长,需要知道什么条件?(直径)

  做一做 同学们现在我们能不能解决转动的风车,形成的圆的周长的问题?如果老师告诉你风车的半径是10厘米,你能算出周长吗?

  老师给同学们带来了一个圆桌,它的直径是0.95米,你会算它的周长吗?(例1)

  做一做.一辆自行车的车轮半径是0.33米.车轮滚动一周自行车前进多少米?(得数保留两位小数)

  (三)巩固练习

  1.计算下面各圆的周长。

  d=2米 r=6分米 d=1.5厘米 r=1.5厘米

  2.判断题

  (1)π=3.14 ( )

  (2)大圆的圆周率比小圆的圆周率大 ( )

  (3)直接是2厘米的圆的周长是 ( )

  3.14×2=6.28米

  (4)半径3米的圆的周长是

  3.14×3=9.42米

  3.知识的拓展应用

  计算广场圆形喷水池的周长。(计算两个圆的周长,环形,小圆的直径是40米,环宽5米)

  (四)评价小结

  通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?

  师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!

《圆的周长》教学设计2

  教学目标

  1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。

  2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。

  3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。

  教材分析:

  《圆的周长》是六年级数学上册第一单元11至13页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

  学情分析:

  因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。

  教学重点:

  正确计算圆的周长。

  教学难点:

  理解圆周率的意义,推导圆的周长的计算公式。

  教学过程:

  (一)创设情境,提出问题。

  师:同学们,你们每天下课都会去学校中间的圆形花园玩。如果我绕着它的最大横截面走一圈,大约走多少米呢?这个问题是求什么呢?(板书课题:圆的周长)我们今天就来解决这个问题。

  (二)自主学习,探究新知。

  1、自主探究

  (1)熟悉圆的周长的概念。

  师:同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。

  (找个别学生示范)

  生:圆的周长是指圆一周的长度。

  2、合作交流

  在六人小组内讨论交流求圆周长的方法。

  3、汇报展示

  ①用围的方法。指名演示。问:要注意什么?

  ②用滚的方法。指名演示。

  问:要注意什么?

  生:在圆上先作了记号,沿直尺滚动一周。无论是滚动法还是绳围法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)

  教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么花园最大横截面的周长,还能用以上这些方法吗?

  生:不能。

  4、猜想验证

  师:圆的周长与什么有关呢?

  生1:与直径有关。

  生2:圆的周长与半径有关。

  师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。

  5、探讨圆的周长与直径的关系。

  ①小组合作

  要求学生以六人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,三人同步计算计算圆的周长与直径的商,第六个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。

  周长

  直径

  周长与直径的商(保留两位小数)

  1号圆片

  2号圆片

  3号圆片

  ②学习“圆周率”

  师:同学们,由于各种原因,不同的圆计算出的'周长与直径的商可能不完全相同,但实际上,这个商是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)

  (3)渗透数学文化

  师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?

  6、推导公式

  师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?

  生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)

  师:你能用字母表示圆的周长计算公式吗?

  生:C=πd。(板书公式:C=πd)

  师:如果已知半径呢?

  生:C=2πr。(板书公式:

  C=2πr)

  师:为什么呢?

  生:因为直径是半径的2倍。

  师:孩子们,就让我们带着满满的收获,再次看看花园吧!已知花园最大的横截面的直径是15米,如果朱老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。

  (三)巩固新知,解决问题

  1.判断

  (1)圆的周长是直径的π倍。

  (2)大圆的圆周率大于小圆的圆周率。

  (3)π=3.14

  ⑴、老师家里有一块圆形的桌布,直径为1米。为了美观,准备

  在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  ⑵、请同学们以小组为单位,画一个周长是12.56厘米的圆,先

  讨论如何画,再操作.

  四、课内小结,扎实掌握:

  通过今天的学习,你有什么收获?

  五、课外引申,拓展思维:

  一个茶杯口的直径你有什么方法知道?

  结束语:同学们,圆形是一种很漂亮的图案,圆满的人生是我们一生的追求,只有我们努力拼搏、发愤图强才能使我们的人生圆满、国家强盛。

《圆的周长》教学设计3

  教具、学具准备:

  多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。

  教学过程:

  一、 认识圆的周长

  1.情境导入。

  师:同学们,看过《米老鼠和唐老鸭》吗?

  师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?

  (生齐鼓掌!)

  师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)

  2.迁移类推

  师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?

  (1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)

  (2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?

  (围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)

  师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。

  (3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)

  师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?

  (板书课题:圆的周长)

  (4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。

  师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。

  (完成板书:围成圆的曲线的长叫做圆的周长)

  师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。

  3.实际感知

  师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。

  二.测量圆的周长

  1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)

  师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)

  2.小组汇报:(预设)

  (1)师:哪个小组愿意来汇报?

  方法一:用线绕

  师:谁来与老师配合绕给同学们看看?

  (师生合作用绕线的方法去测量圆周长)

  师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)

  师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)

  (2)师:除此以外,还有别的方法吗?

  方法二:把圆放在直尺上滚动一周。

  师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的`零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)

  (3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)

  师:真的吗?谁敢来试试。

  指名一生上台测量黑板上的圆。可能用线绕。

  师:有什么感觉?(不方便!)

  师:那你可以把它搬下来滚动呀!

  这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。

  三、引导学生发现圆的周长和直径之间的关系

  1.猜测

  师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)

  2.验证

  师:谁知道圆的大小是由什么来决定的吗?(半径或直径)

  师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)

  师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?

  师:你感觉到了吗?

  (圆的直径越长,周长越长;圆的直径越短,周长越短。)

  师:这就说明圆的周长肯定与圆的什么有关系?

  (圆的周长与直径有关系。)

  师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。

  (生实际测量、计算、填表)

  3.展示汇报

  师:哪一个小组愿意来汇报你们的数据。

  师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)

  师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?

  4.揭示规律

  师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!

  屏幕出示图3:

  师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?

  (圆的周长总是它直径的3倍多一些)

  师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。

  5.介绍小知识。

  师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)

  五、揭示圆的周长计算公式

  师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?

  (测量出它的直径)

  师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)

  师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)

  (板书:C=πd)

  师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?

  (板书:C=2πr)

  练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?

  学生独立计算。汇报:唐老鸭跑的路程更远。

  六、应用圆周长计算公式,解决简单的实际问题.

  1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  (课件出示)

  (1)学生独立完成,汇报,弄清列式的依据。

  (2)小结:已知直径求周长可直接套用公式。

  2.通过媒体演示指导学生完成"做一做"作业。

  饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?

  小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.

  五、总结,质疑,看书内化。

  师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。

  六、巩固练习。

  1.判断。

  (1)圆周率就是圆的周长和直径的比值。

  (2)π=3.14。

  (3)半径的长短决定圆周长的大小。

  (4)同圆中,周长是直径的π倍。

  2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?

  3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?

  4.求半圆的周长:d=6厘米(图略)

《圆的周长》教学设计4

  教学目标:

  1、使学生认识圆的周长,理解圆周率的意义,掌握圆的周长计算公式,能正确地计算圆的周长,解决与圆的周长有关的简单实际问题。

  2、培养学生初步地观察和动手操作的能力。

  3、培养学生的探究意识,感受数学与现实生活的联系,增强民族自豪感。

  教学重点:

  推导圆的周长计算公式、

  教学难点:

  理解圆周率的意义

  教具学具:

  1、学生准备圆形实物模型,直径为4厘米、2厘米、3厘米圆片各一个,线,直尺,计算器、

  2、电脑课件,投影仪。

  教学过程:

  一、激趣导入。

  师:在体育场两只可爱的小蜜蜂飞行比赛,同学们想不想去看一看?

  出示两个场地。(正方形场地、圆形场地)

  师:这两个场地南北东西一样长,两只蜜蜂谁飞的距离长?(师点击幻灯片2)

  预设生:第一只。

  预设生:第二只。

  学生可能产生疑惑。

  师引导:比谁飞的距离长其实就是比什么?

  生:比周长。

  你能解决吗?

  生:不能。

  师:为什么?

  生:正方形的边长可以知道。但圆的周长不会求。

  师:什么是正方形的周长?

  生:边长乘以4、

  师:圆的周长是什么呢?那么我们这一节课就来研究这个问题。

  板书:圆的周长。(点击幻灯片3)

  二、认识圆的周长。

  师:你能说出这个圆的'周长吗?让学生指一指。(再点击幻灯片3)

  老师再指圆的周长。

  师:下面拿出你准备的圆形实物用手摸一摸它的周长。

  学生上台演示。(老师提供一个大的圆形实物让学生演示)

  师:你能说说圆的周长是什么?

  生说:师板书圆的周长定义。

  师:刚才我们也已经知道圆的周长定义也摸周长了。那怎样求出它的周长?

  下面学生小组动手操作。并上台展示。

  (师点击幻灯片4、5)演示刚才求圆周长的两种方法。绕线法、滚动法。

  点击幻灯片6你用什么方法测圆的周长呢?

  生:绕线法、滚动法。

  不能测,学生有疑问。

  师:我们用绕线法、滚动法可以测出一些圆的周长,但实践证明存在局限性,我们怎样求圆的周长呢?

  师:圆的大小与什么有关?

  生:半径。

  生:直径。

  师:那么圆的周长到底与什么有关系呢?

  下面拿出你准备的圆形实物测量,把实验报告单认真填好。

  小组讨论,动手操作。教师巡视。

  三、理解圆周率。

  师:圆的周长到底与什么有关系呢?

  生:直径

  师:什么关系?哪个小组愿意上台展示?

  最后学生得出结论:周长是直径的三倍多一些。

  师演示三倍多一些。(点击幻灯片7、8)、

  师:怎样求圆的周长?用三倍多一些乘以直径?三倍多一些到底是多多少呢?

  点击幻灯片9师说我们数学规定圆的周长除以直径的商是一个固定的数。我们把它叫做圆周率,用字母π表示。

  π=3、141592653…

  我们来看用这个数来乘以直径是很麻烦的。为了计算方便我们把它保留两位小数约等于3.14、

  师:第一个发现这规律的是谁?

  生:祖冲之。

  (点击幻灯片10)、

  四、归纳圆周长公式。

  师:现在你能说出圆的周长公式吗?

  生:圆的周长是直径的π倍、点击幻灯片11

  师:用字母怎么表示?

  生:C=πd

  师:知道半径呢?

  生:C=2πr

  五、圆周长公式的运用。

  师:会求圆的周长了吗?

  生:会。

  师:那我来考一考。点击幻灯片12、

  学生做完。老师出示解。小组互查。做正确的举手。

  学生自己做幻灯片13的题。做完上台展示。小组互查。

  点击幻灯片14学生站起来回答。

  点击幻灯片15、16学生说。

  师:刚才我们会用直径、半径求圆的周长。现在如果知道圆的周长怎样求圆的直径呢?

  点击幻灯片17、18做完上台展示。

  点击幻灯片19回归小蜜蜂谁飞的路程长?

  六、思维拓展。

  七、教师寄语

  八、小结:这节课你有什么收获?

  教学反思:

  为了调动学生的积极性先创设情境:两只可爱的小蜜蜂在体育场上进飞行比赛,同学们想不想看一看?在正方形场地,圆形场地飞行?他们东西南北一样长?谁飞行的路程长?”从而达到以旧有知识正方形的周长知识为铺垫引出圆周长知识,并让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识了解之间的区别,前者是线段求和,后者是曲线求长,作好先导知识和心理上的准备。这节课的在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。全课从创设现实生活情景导入新课,解决现实生活问题,渗透生活的理念。

  动手实践,自主探索和合作交流是小学生学习数学的重要方式,而“猜想—验证”又是学生探索中常用的方法,这节课学生通过量、饶、滚找出周长和直径的倍数关系,用计数器把测量的周长和直径的倍数关系算出,填写实验报告单,观察数据发现倍数关系,由“是——也是——还是——总是”最后概括为圆的周长总是直径的三倍多一些。”较强的数学思想方法得于渗透。学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,周长公式的形成、获得、应用了然于心。提倡自主性“学生是教学活动的主体,教师成为教学活动的组织者、指导者、与参与者。”这一观念的确立,灌输的市场就大大削弱

  学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。

  在总结新课时再回到课的开始让学生判断谁飞行的路程长,为什么?在设计一题课后思考题,这样前有孕伏,后有照应,使整节课浑然一体,思维拓展既满足了学有余力学生的需求,又使教学意犹未尽。

  不足之处:

  1、学生说时,教师的耐心还不够,学生许多想法很好,但老师为了完成本课内容没有让学生都说一说。

《圆的周长》教学设计5

  教学内容:义务教育课程标准实验教科书六年级上册第62——64页。

  教材分析:

  这部分内容是在学习了周长的一般概念以及学习长方形、正方形、三角形的周长的计算的基础上进一步学习的内容。本课以探索圆的周长与它直径的倍数关系为重点,从而引出圆周率的概念,并总结出圆的周长计算公式。学生掌握了圆的周长的计算,可以解决生活中许多实际应用求圆的周长的问题,还为以后学习求圆柱的侧面积打好基础。

  学情分析:

  六年级学生已经有了一定的动手操作能力,也喜欢自己动手实践,教学时我充分认识到这一点。学生已经有了圆的周长的一般性概念,只是研究圆的周长与直径的关系。所以,教学的关键是引导学生通过动手操作发现圆的周长与直径之间的倍数关系。

  教学目标:

  1、知识与技能目标:使学生直观认识圆的周长,掌握圆的周长计算公式,能正确计算圆的周长。

  2、过程与方法目标:通过对圆周率的值的探索,培养学生的观察、比较、分析、概括及动手能力,发展学生的空间观念。

  3、情感态度与价值观目标:通过介绍祖冲之在圆周率方面所做的贡献,渗透爱国主义思想。

  教学重难点:

  重点:理解并掌握圆的周长计算方法。

  难点:理解圆的周长公式的推导。

  师生齐准备:

  教师:4个直径分别是4厘米、6厘米、8厘米、10厘米的硬纸圆片。

  学生:自作硬纸圆片、直尺、小剪刀、细绳、计算器。

  设计思路:

  《数学新课程标准》指出:“学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。”根据课标的要求,本课让学生积极思考、自主探索测量圆周长的方法,并在小组合作下动手实践,成功地测量出圆的周长。又让学生带着明确的目的通过计算、观察、分析发现规律,理解圆周率的意义。从而推导出圆的周长的计算方法,最后利用规律解决问题。这样的设计,能有效地启发学生的思考,使学生成为学习的主体,逐步学会学习。

  教学过程:

  一、课前准备,激发兴趣

  1、亲自体验

  大家都知道我们校园大道两旁的草坪上有两个花坛,左边一个是正方形、右边一个是圆形。请同学们分别沿着边沿走一圈,看看哪边的路长。

  2、全班交流

  要想知道哪边的路长,只要比较什么就可以了?怎样比较?全班交流一下,下节课把这些问题带到课堂上来。

  【设计意图:让课堂回归学生的生活空间,回归学生的身边,大大激发了学生的学习兴趣,从而对学习充满了信心。】

  二、解决悬念,导入新课

  1、解决悬念

  师:同学们,要想知道哪边的路长,只要比较什么就可以了?怎样比较?

  通过课前的交流得出:要想知道哪边的路长,只要比较正方形和圆的周长就可以了。

  2、导入新课

  同学们,你有办法计算正方形的周长吗?(生回答)圆的周长又该怎样计算呢?这节课我们就一起来研究圆的周长。(板书:圆的'周长)

  【设计意图:解决课前悬念,又让学生带着新的悬念进入学习,再次点燃了学生思维的火花。】

  三、探索新知

  1、认识圆的周长

  师:我们已经学过正方形、长方形的周长,(师拿着这两种图形边演示边说)那么你们知道圆的周长在哪里吗?现在拿出课前准备的圆片,同桌互说并且用手演示给你的同桌看看。

  (1)演示时应注意什么?(起点和终点)

  (2)指名学生上台演示。

  (3)学生试着用自己的话说一说什么是圆的周长,并充分交流。

  (4)师生共同概括总结:围成圆的曲线的长度就是圆的周长。

  【设计意图:让学生动手操作并充分交流得来的结果,学生对知识的得来更深刻。】

  2、谈话激趣

  师:我们要想知道圆形花坛的周长和手中圆片的周长,应该怎么做?(生:量)

  师:如果这个圆很大很大怎么办?像我们的学校、甚至我们整个村委会、整个地球这么大,我们小学生还能量吗?(生:计算)

  师:怎么计算呢?古今中外的数学家在千百次的实验中发现圆的周长与它的直径有着密切的关系,我们是不是也来做个实验,看看圆的周长与直径究竟有什么关系?

  3、学生自主寻找测量圆的周长

  师:把准备好的4个不同直径的圆片发给每个小组,并把下表格贴在黑板上

  研究对象

  直径

  (厘米)

  周长

  (厘米)

  周长与直径的比值

  得数保留两位小数

  (1)提问:圆的周长用直尺测量方便吗?用什么方法可以化曲为直,量出圆的周长呢?

  (2)小组合作,寻找测量圆的周长的方法

  教师巡视,也可以参与到学生的小组学习中去。

  (3)组织交流

  学生可能会出现以下两种方法:绕绳法和滚动法。

  (4)寻找不同方法的学生分别上台演示,并说说测量方法的过程。

  (5)不同小组汇报测量结果,教师把结果填入相应的表格里。

  【设计意图:让学生通过小组合作,全体交流探索测量一般圆形周长的方法,目的是让学生通过动手操作,养成积极开动脑筋思考问题的良好学习习惯。】

  4、探究圆周长与直径的关系

  (1)学生计算

  师:现在请同学们用计算器计算圆的周长与该圆直径的倍数关系,教师根据学生计算结果填入相应的表格里。

  (2)引导学生观察发现

  通过我们的实验和计算,再观察黑板的表格,请分析数据,你发现了什么?

  (3)先在小组里交流,再全班交流。

  (4)交流发现:圆的直径越长,圆的周长就越长;圆的周长总是它直径的3倍多一些。

  【设计意图:在学生较好的获取了圆的周长的意义后,又让学生带着明确的目地和极高的兴趣在实验结果中观察、分析圆周长与它直径的关系,达到了感知和理解的目的。】

  5、介绍圆周率

  师指出:经过实验证明,圆周长确实是直径的3倍多一些,我们把它叫做圆周率,用字母∏表示,圆周率是一个固定的数,它是一个无限不循环小数,∏=3.1415926535…但在实际应用中一般是取它的近似值3.14。其实很早以前我国的数学家祖冲之就发现了这个规律,下面就请大家翻开课本第63页学习“你知道吗?”通过学习老师也希望大家像数学家祖冲之一样,在学习上有不断的探索精神,将来我们也能成为数学家。

  【设计意图:通过介绍圆周率的来历,让学生为我国古老而悠久的文化与祖先的聪明才智所折服,激发学生的爱国热情及学习的积极性。】

  6、推导圆周长的公式

  师:根据圆周率的含义,你想说什么?

  (1)引导学生说出:圆的周长是直径的∏倍。

  (2)引导学生归纳:圆的周长=直径×∏。

  如果用c表示圆的周长,d表示直径,字母公式你会表示吗?板书c=∏d。

  如果知道半径r呢?板书c=2∏r。

  师:同学们通过自己的努力得出了圆的周长的公式,要求圆的周长,需要知道什么条件呢?(直径或半径)

  齐读公式

  【设计意图:知识到这里已是水到渠成,放手让学生自己总结,充分相信学生,增强学生学习信心。

  四、教学例题

  (1)出示例1,学生读题,并说说了解到的信息和问题。

  (2)学生独立解决问题。

  (3)个别学生上黑板板演,并说说自己的想法。

  (4)组织全体学生交流。

  【设计意图:刚刚总结出来的公式,放手让学生试着用,从而增强学生学习的成功感。】

  五、巩固运用

  1、填表

  半径r(m)

  直径d(m)

  周长c(m)

  2、老师已经量过我们草坪上圆形花坛的半径是4米,请同学们算一算,沿着它的边沿走一圈是多少米?

  课后回去再想办法求出正方形的花坛的周长,再比较一下圆形花坛的周长大,还是正方形花坛的周长大。

  3、一个圆形喷水池的半径是5m,它的周长是多少米?

  4、一个呼啦圈的直径是0.95米,它的周长约是多少米?(得数保留一位小数)

  5、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?经过45分钟呢?

  【设计意图:练习的设计既注意公式的简单应用,又注重使学生能熟练应用公式解决不同情况的实际问题。体现数学在生活的价值。】

  六、课堂小结

  今天我们一起研究了圆的周长。请你告诉大家你学会了关于圆的周长的哪些知识?

  【设计意图:让学生对本课知识进行回顾和总结,加深记忆和理解。】

  七、板书设计

  圆的周长

  围成圆的曲线的长度就是圆的周长

  绕绳法和滚动法

  圆的周长=直径×∏

  c=∏d或c=2∏r

  【设计意图:使学生对本课知识更明了、清楚,一目了然。】

  自我评析:

  1、让学生在生活中学习数学

  《数学课程标准》明确要求“使学生感受数学与现实生活的密切联系。”这是小学数学教学的基本任务。本节课选取实际生活周边的场景,让学生课前亲身体验,充分交流等学习方法进入新课学习,真真正正地把数学融入生活。

  2、在亲自实验中实现新知识的生成

  在学习探究圆周率这个环节中,我充分让学生在小组合作,动手操作以及观察、分析、归纳和概括为一体的活动中学习,一是为学生提供了自主探索学习的时间与空间,二是引导学生的多种感官参与学习过程,从而提高学生学习的主动性和积极性,突破了难点,水到渠成地实现新知识的生成。

  3、精心设计练习,提高应用意识

  把所学知识应用于生活实际,不但可以使学生感到知识是有用的,而且有利于提高学生灵活应用知识的本领。本节课的练习设计既注意公式的简单运用,又注重应用公式解决不同情况的实际问题。体现了“学数学,用数学”的教学观念。

  总之本节课的设计从学生的实际出发,通过测量圆的周长、探索圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生是在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更重要的是态度、思想、方法,是一种探究的品质。

《圆的周长》教学设计6

  教学内容

  北师大版小学数学六年级上册教材第9页~第11页。

  课前思考

  本节课的教学目标非常明确:利用学具合作探究圆的周长的测量方法,发现圆的周长与它的直径之间的关系,从而推导出圆的周长计算公式;能运用公式解决一些简单的数学问题。以此教学目标为指导,为了能抓牢学生的注意力,激发起他们主动参与课堂活动的兴趣,课堂上李老师组织学生积极利用圆片、卷尺、绳子等学具进行探究,使教、学具在数学课堂上的作用得以体现。

  课堂写真

  (教师利用课件出示两种自行车图片,学生观察。)

  师:你会选择哪一辆参加我校组织的自行车比赛呢?

  生:第一辆。

  师:为什么选择第一辆自行车呢?

  生:因为它的轮子大,跑得快。

  师:为什么它跑得快呢?

  生:因为它滚一圈的长度长。

  师:对!轮子大,滚一圈的长度也就长。我们把车轮滚动一圈的长度就叫作它的周长。那么这两款自行车车轮的周长到底是多少呢?谁能帮助我们解决这个问题?

  生:我们可以通过测量的方法得到车轮的周长呀!

  师:你的'反应很快。那么如何测量呢?这是需要我们思考的问题!下面就请同学们小组合作,利用小圆片及其他学具探究圆的周长吧!

  (学生开始讨论,操作学具,2分钟后,每个小组都有了各自的测量方法。)

  [分析] 李老师从学生的生活出发,利用多媒体课件出示自行车的车轮让学生首先明确“圆的周长”的意义,接着引导学生思考如何得到圆的周长。在学生想到测量方法时,李老师又鼓励学生用手中的学具探究测量圆的周长的方法。在她的主导作用下,学生积极主动地参与了学习,给这节课开了一个好头。

  师:哪个小组愿意先来晒一晒你们的测量方法?

  生:我们第一小组先来。我们组是在圆形纸片的边缘标一个起点,然后把它放在直尺上,让这个起点对准零刻度,最后把纸片沿直尺滚动一圈,就得到它的周长了。

  师:嗯!这是个不错的方法,但请同学们思考:如果有一个很大的圆形游泳池,要测量它的周长,我们能把它放在直尺上滚动一圈吗?

  [分析] 让学生操作学具展示自己的测量方法,锻炼他们的动手能力,有了学具的参与,学生用事实说明了问题。同时也促进了他们的合作能力和语言表达能力。接着,李老师又提出了新的问题,为后面的课程做铺垫。

  生:下面请听一听我们第二小组的方法。我们小组是用绳子绕圆片一周得到它的周长,所以我们也可以用绳子绕圆形游泳池一周,再测量出绳子的长度,不就测量出了圆形游泳池的周长了吗?

  (说完,大家为第二小组的同学们鼓起了掌。)

  师:大家对你们的方法已经做出了肯定,这个测量方法的确很棒!

  (此时,第二小组同学们的脸上露出了得意的笑容,就在这时,老师拿出一根绳子,绳子的一端系着一个小球,接着将绳子在空中旋转起来。)

  师:同学们请看,小球走过的路线是什么形状呢?

  生:是一个圆形。

  (这时,教师转向第二组的同学并提问。)

  师:如果想得到这个圆的周长,还能用你们小组的这种绕线测量的方法吗?

  生:不能。

  [分析] 第二小组同学们利用绳子、直尺等学具创设了“绕线法”解决了问题后,李老师再次提出了质疑,这次的问题更难解决,也让同学们进一步意识到测量方法的局限性。

  师:第三小组的同学,你们有什么好方法?

  (第三小组派代表发言。)

  生:我们可以把系有小球的绳子放在纸片上,固定一端,拉紧绳子,旋转一周,用笔描画出小球的运动路线,然后将这个圆剪下来,再利用之前同学们说的滚动或者绕线的方法测量出这个圆的周长,不就解决了这个问题吗?

  (同学们听完后,恍然大悟,都夸赞第三小组的同学聪明,此时的他们心里美滋滋的。)

  师:你们组的想法很有创意,但大家有没有想过,这个小球的运动方式就好比公园里巨大的摩天轮,如果要得到摩天轮的周长,这个方法还可行吗?

  生:不可行。

  师:看来,用测量的方法得到圆的周长具有一定的局限性,而且测量中也存在误差,数据不够精确,我们还要像研究长方形或正方形的周长那样,找到一个科学普遍的公式来计算圆的周长。

  生:圆的周长与什么有关?有怎样的关系?

  师:请利用你们手中的学具合作探究吧!

  (同学们通过操作学具,经历测量、填表、计算、观察等活动,终于发现了圆的周长是它的直径的3倍多一些。再结合教材推导出了圆的周长计算公式,心中的成就感和自豪感油然而生。)

  [分析] 同学们带着心中的疑惑去探究,目的明确,再加上小组合作,合理的分工,充分利用学具,让每一个学生都有事可干,教室里气氛活跃而井然有序。经过学生自己的努力,他们终于发现了圆的周长与它的直径之间的3倍多一些的关系,也推导出了圆的周长计算公式。

  课后解读

  数学课堂中应用教具、学具,能锻炼学生的动手操作能力和思维能力,使他们对知识有更深刻的认识和理解。本节课李老师就是利用教具学具紧紧抓住了学生们的注意力,让他们通过一系列的操作活动积极主动地获取了新知,让学生在“玩”中学、“学”中玩,使大家印象中枯燥的数学课变得活跃起来。

《圆的周长》教学设计7

  1.简单而富有内涵的引入

  余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。

  有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的.数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。

  2.自发而科学严谨的探究

  关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的进行探究,"这两个圆,哪个圆的周长比较长?""圆的周长和什么有关?""怎么样研究它们之间的关系?""怎样测量圆的周长?"每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的智慧!

  3.数学思想和文化的渗透

  在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了"变"与"不变"辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!

  思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?

《圆的周长》教学设计8

  教学目标:

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点:推导圆的周长的计算公式,准确计算圆的周长。

  教学难点:理解圆周率的意义。

  教具准备:圆片、铁圈、绳子、直尺。

  教学方法:观察、演示、小组合作交流

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

  (3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的`圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  二、经历探究全程,验证猜想发现。

  一圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  二圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

  三、感受数学文化,激发情感教育。

  1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  2、介绍计算机计算圆周率的情况。

  3、教学圆周率:π≈3.14。

  四、归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd或C=2πr

《圆的周长》教学设计9

  教学内容:圆的周长

  内容分析 :通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。

  学生起点 :对圆和周长的概念已有初步的认识

  教学目标: 1、理解圆周长的概念,理解圆周率的意义。

  2、使学生掌握圆周长的计算公式及公式的推导过程。

  3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。

  4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。

  教学重点 :圆周长公式的推导。

  教学准备 :直尺; 两个有厚度、标明直径、不同规格的圆片;棉线。

  教学流程:

  一、复习引入

  1、学生说圆的认识;

  (你对圆的知识有哪些了解)

  2、揭示课题:

  今天我们要一起来学习圆的周长。(板书:圆的周长)

  二、新授

  1.认识圆的周长;

  (1)师拿出圆片让学生指出圆的周长;

  (哪一部分是圆的周长)

  (2)描出两个规格不同的圆的周长;感受圆的周长;

  (请你描出练习纸上两个圆的周长。)

  (哪一个周长长?)

  (3)揭示圆周长的概念;

  (用自己的话说说什么是圆的周长)

  师小结:围成圆的曲线的.长叫做圆的周长;

  围成圆的一周的长叫做圆的周长。(幻灯出示)

  2、理解、运用圆周长的测量方法。

  师问:圆的周长长短不一,该怎么测量?

  生边演示测量圆片周长,边介绍绳测法。

  要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。

  学生汇报测量结果,师记录。

  圆片测量记录单:

  3.探究圆的周长与直径的关系。

  (1)猜测跟圆周长相关的量;

  (猜测一下,圆的周长长短跟什么量有关?)

  计算记录单中周长与直径的比值,得数保留两位小数;

  学生反馈比值;

  周长(厘米)

  直径(厘米)

  周长与直径的比值(得数保留两位)

  (2)认识圆周率

  ①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。

  (板书:圆周率 π )

  ②幻灯片展示圆周率的由来,学生自主阅读;

  总结圆周长的计算公式。

  ①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?

  提示:从测量记录单中找取。

  ②如果周长用C表示,字母式是怎样的?

  ③周长跟半径又是怎样的关系呢?字母式呢?

  (板书:圆周长=圆周率×直径 C=πd 或

  圆周长=2×圆周率×半径 C=2πr

  三、巩固练习

  基本练习

  一个圆的直径是10米,它的周长是多少? 一个圆的半径是10米,它的周长是多少? 判断。

  只要知道圆的直径或半径就可以计算圆的周长。( ) 大圆的圆周率大,小圆的圆周率小。 ( ) 圆周率的值就是3.14. ( ) 4圆的周长是直径的 倍。 ( ) 能力拼比:

  两个小朋友同时同速从A点到B点,谁先到达?

  B

  A

  四、总结:学习了这堂课你有哪些收获?

《圆的周长》教学设计10

  课时目标:

  ⒈理解圆的周长和圆周率的含义,初步理解和掌握圆的周长的计算公式,并能正确计算圆的周长。

  ⒉培养学生观察比较、分析判断及动手操作的能力,从而发展学生的空间观念。

  ⒊结合祖冲之的资料,对学生进行爱国主义的教育。

  重点:

  理解并掌握圆的周长的计算方法

  突破方法:

  让学生利用实验的手段,通过测量、计算、观察发现圆的周长和直径的关系,理解并掌握圆的周长的计算方法

  难点:

  理解圆周率的意义

  突破方法:

  观察交流实验报告单,发现规律,理解圆周率的意义

  教学过程:

  一、复习:

  1、老师在黑板上画了一个长方形和一个正方形,谁能用红笔描出它的周长并写出字母表示其周长公式。

  2、当你看到这两个周长公式时,你们发现了什么?

  生:长方形的周长与长和宽的和有倍数关系

  正方形的周长与边长有倍数关系

  3、那就说明我们研究长方形或正方形的周长时,主要考虑两个方面:

  它与什么有关?有什么样的关系?

  今天我们就带着这样的问题来学习圆的周长(板书课题)

  二、新授:

  1、师出示一个圆,请大家看,老师手里有一个圆,你知道圆的周长是指的哪部分吗?

  谁来动手摸一摸,指一指

  那么什么是圆的周长呢?圆是由什么线围成的?课件展示什么是圆的周长。

  板书:围成圆的曲线的长是圆的周长

  2、今天老师带来一些圆,请你们各个组来测量这些圆的周长,不管用什么样的方法,只要能够得到圆的周长就可以了,请你们一律用厘米作单位,我们每个小组桌上都有一张小表格,请你们将测得的周长填在第一栏里,请小组分工合作。

  师:你们是怎样测得圆的周长呢?哪位同学到前面来给大家讲一讲,同时演示。

  (一) 用卷尺直接绕圆一圈(卷尺与起点重合)

  (二) 把圆放在直尺上滚一圈得到圆的周长.(在圆上固定一点,在尺子上滚动)

  (三) 拿线绕圆一周,再将线拉直,量出线的长度就是圆的'周长.

  (学生在演示时,老师主动说我来帮你,你也是在小组合作中完成的)

  那刚才我们同学不管是通过绳子还是把圆放在尺上滚得到圆的周长,最后都是测量一条直的线段的长,但我们开始已经知道圆的周长是一条曲线的长,这就说明我们是把曲线化为一条直线段来测量,那是不是所有的圆都可以用这个方法来测量它的周长呢?想一想,为什么?

  (生:不行,有的圆特别小,不好滚动,有些特别大)

  师:如我们转动的吊扇、转动的摩天轮,它在转动时也是形成一个圆,但这个圆能通过刚才的方法来测量它的周长呢?(不能直接测量)那看来,我们刚才所有的测量周长的方法都有一定的局限性。

  看来,我们也需要像研究长方形和正方形一样来找到一种作为普遍的公式能够直接计算周长,那现在大家想一个问题:圆的周长与什么有关(请大家认真看屏幕)通过观察这三幅图,你发现了什么?

  (直径越长,周长越长)

  看来直径确实能决定圆的周长,是这样吗?

  请同学们继续刚才的测量,先前已经得到圆的周长,接下来我们来测量圆的直径,找出圆的周长和直径的关系。

  请同学们继续合作,把桌上的表格填好(注意,周长除以直径,如果除不尽时保留两位小数。)

  (有人测量、有人计算、有人填表,分工非常明确)

  填完之后,小组内同学互相说说,你们发现了什么?

  哪个小组最快填完,老师把这一组的结果填在黑板上。算完之后,请你们仔细看看,有没有算得跟这个组不一样的。(生:有)

  师:这是什么原因呢?是我们计算不对吗,还是别的原因呢?(误差)那你们小组讨论出的结论是周长与直径有什么关系呢?

  (生:每个圆的周长都是它直径的三倍多一些)

  是不是所有的圆,它的周长都是直径的三倍多呢?

  请大家看大屏幕,这是我们三个直径不同的圆,让我们看看它们是不是也有我们同学刚才所说的倍数关系呢?

  (动画的形式,演示圆的周长与直径的倍数关系)

  看来,我们同学得到的结论是正确的,确实每个圆的周长都是它直径的三倍多一些,说明圆的周长与直径确实有倍数关系,我们把这个固定不变的倍数叫做圆周率,用字母“π”表示,(板书)请大家看屏幕,这里是有关于圆周率的介绍(出示课件)

  看完这段话,你们有什么感想?(古代有无数的数学家为此付出了很多的心血,为我们古代数学家感到自豪,为我们的民族感到骄傲)

  现在请同学们打开数学书第63面中间一段文字,看完之后,还有什么新的收获(还知道关于圆周率的什么知识)圆周率是一个无限不循环小数,在实际应用中一般取它的近似值为3.14。

  现在同学们知道怎样来计算圆的周长吗?有公式吗?

  如果用C表示圆的周长,就有:

  C= πd 或C= 2πr

  这两个公式都可以用来计算圆的周长

  三、巩固练习

  1、求下面各圆的周长:

  ①直径为6㎝ ②半径为5㎝

  2、接下来,咱们去生活中看看,能不能利用我们刚才学到的知识去解决生活中的问题呢?

  出示例1:一辆自行车轮子的半径大约是33㎝,这辆自行车轮子转一圈,大约可以走多远?(结果保留整米数)小明家离学校1㎞,骑车从家到学校,轮子大约转了多少圈?

  3、判断练习:

  (1)只要知道圆的直径或者半径就可以求圆的周长()

  (2)π=3.14()

  (3)大圆的圆周率比小圆的圆周率大()

  (4)圆周率就是圆周长除以直径的商()

  (5)圆周长是半径的2π倍 ()

  四、总结:这节课我们学习了很多有关圆的周长的知识,那你们说说都有什么收获?

  生:答

  师:同学们有收获,就是老师最大的收获。

  板书: 圆的周长

  围成圆一周的曲线的长叫做圆的周长

  周长 直径周长/直径的比值 圆周率π

  (保留两位小数)

  38 12 3.17C= πd

  258 3.133倍多一些 或C= 2πr

  196 3.17

《圆的周长》教学设计11

  教学内容:

  冀教版《数学》六年级上册第六单元一课时

  教学目标:

  1、知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握圆的周长的计算公式,并能正确地计算圆的周长;能利用圆周长计算公式解决简单的实际问题,发展应用意识。

  2、能力目标:通过对圆周长测量方法和圆周率的探索,圆的周长计算公式的推导等数学活动,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力及团队合作精神。

  3、情感目标:通过介绍我国古代数学家祖冲之在圆周率的伟大成就,对学生进行爱国主义教育。

  教学重点:

  能利用公式正确计算圆的周长。

  教学难点:

  理解圆周率的意义,圆的周长计算公式的推导。

  教学准备:

  课件,直径不同的圆,细绳,软皮尺,直尺,计算器。

  教学过程:

  一、导入

  师:老师给同学们带来了两位老朋友了。(课件出示长方形和正方形)

  师:相信大家对长方形和正方形都有很多的了解了,我不让大家介绍了,老师要问同学们两个问题。”

  1、什么叫长方形和正方形的周长?

  2、长方形和正方形的周长和什么有关?

  学生思考后回答:围成长方形四条边长的总和叫长方形的周长,围成正

  方形四条边长总和叫正方形周长。长方形的周长和它的长和宽有关,正方形周长和边长有关。

  (课件出示圆形)

  师:“你对圆形有哪些了解?”

  学生能说出圆的各部分名称,直径是半径的2倍,圆有无数条对称轴,对称轴就是圆的直径。

  师:那什么是圆的周长呢?

  生:围成圆一圈弧线的长度总和叫圆的周长。

  师:那你还想知道哪些圆的知识呢?

  生:我想知道圆的周长和面积。

  师:这节课我能满足你们的一个愿望,我们一起来研究的是圆的周长。

  (板书课题)

  二、探索新知

  1、周长的测量(自主发现、动手操作)

  师:利用准备的学具,测量一枚一元硬币的周长,看哪位同学的方法最准确?

  学生说出三种方法:绳测法、滚动法、软皮尺测,学生边说边进行演示。

  2、圆周与直径的探究

  师:在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。大家想一想圆的周

  长与什么有关系。生“直径。”

  师:你们是怎么看出圆的周长和直径有关系?圆的周长跟直径是否存在关系呢?我们一起来研究一下。

  3、小组合作探究圆周长与直径、半径的关系。

  师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。

  小组合作要求:

  1、利用手中的学具测量物品中圆的周长和它的直径。

  2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)

  3、观察得到的数据,你发现了什么?

  师:哪个小组先汇报?先说说你们采用的方法,再说结果。生:绕线法。生:滚动法。

  学生汇报几组数据,教师板书。

  师:通过刚才的.动手操作,你们发现了什么?哪个组说说?生:圆的周长÷直径=3倍多一些。

  师:打开数学书,我们自学83页知识来了解。

  学生自学了解了圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,叫做圆周率,用字母π表示。圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值。

  (板书:圆周率π)课件出示补充祖冲之小知识窗

  早在1500多前,我国古代的数学家祖冲之就精密地计算出圆周率的值在3.—3.之间。这是当时计算出的最精确的圆周率的值,比国外科学家的发现要早1000多年。师:看完这个小知识,你有什么想法?生:祖冲之真伟大,我们的祖先非常的有智慧。师:我们的祖先很聪明,我们更应该发扬光大。师:圆的周长怎么求呀?生:圆的周长=直径×师:板书C=πd谁来说说你是怎么理解的?生:C表示圆的周长,d表示直径,π表示圆周率,

  C=πd师:如果知道半径,应该怎样写?生:C=2πr师:你是怎么想的?

  生:在同一个圆里,直径是半径的两倍。

  三、实践与应用

  1、一面圆镜的镜面直径是40厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米?

  2、求圆的周长

  (1)r=6

  (2) r=10

  (3) d=5

  3、校园里有一颗大柳树,我想知道柳树的直径,你们有什么办法吗?同学们课下求一求。

  四、教师小结

《圆的周长》教学设计12

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:求圆的直径和半径。

  教学难点:灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。

  4π2π5π10π8π

  2、求出下面各圆的周长。

  4厘米

  0

  2厘米

  0

  C=πdc=2πr

  3.14×22×3.14×4

  =6.28(厘米)=8×3.14

  =25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道Π表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=πdC=2πr

  (3)根据上两个公式,你能知道:

  直径=周长÷圆周率半径=周长÷(圆周率×2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77m求:d=?

  解:设直径是x米。

  3.77÷3.143.14x=3.77

  ≈1.2(米)x=3.77÷3.14

  x≈1.2

  (2)做一做。用一根1.2米长的`铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米R=c÷(2Π)求:r=?

  解:设半径为x米。

  3.14×2x=1.21.2÷2÷3.14

  6.28x=1.2=0.191

  x=0.191≈0.19(米)

  x≈0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  D=8厘米

  ⑴3.14×8

  ⑵3.14×8×2

  ⑶3.14×8÷2+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?

  20×2×3.14=125.6(厘米)

  45分钟走了多少厘米?125.6×=94.2(厘米)

  5厘米

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  一、作业。P65-66第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“π”是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“π”的含义就理解得特别透彻,也学得有兴趣。

《圆的周长》教学设计13

  一、设计思路

  本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。

  二、教学过程与设计意图

  教学目标:

  1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。

  2、结合教学内容进行爱国主义教育,激发学生民族自豪感。

  3、培养学生大胆猜想、勤于思考、勇于探索的优良品质。

  教学重点:掌握理解圆的周长公式推导过程

  教学过程:

  A、创设情境·激疑——提出问题

  (出示摩托车里程表)(1)师:这里为什么能反映摩托车行的路程呢?

  (学生思考后师出示有计数器的跳绳作提示)

  (2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。

  (3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。

  (4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。

  (5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?

  设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。

  B、师生共同提出假设

  (1)请学生回忆正方形周长和边长的关系(边长×4)。

  (2)师:能不能求圆周长时也找到这样的倍数关系呢?

  (3)师:测量的圆的什么比较方便呢?生答:半径、直径

  (4)师:请学生先画几条长短不一的线段作直径画圆

  (5)师:观察自己画的.圆你发现了什么?

  学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系

  (6)师:你估计周长是直径的几倍?

  学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右

  (7)师:你有办法验证吗?学生讨论

  演示:用绳绕的方法验证(3倍多一点)

  设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。

  C、探索问题解决的方法·发现——构建新知

  (1)师:你还有别的办法研究圆的周长和直径的关系吗?

  (可以用绳绕滚动的办法分别测量一些圆的周长)

  (2)学生在小小组内动手操作、测量进行验证

  直径(厘米)周长(厘米)周长是直径的几倍

  26.23倍多一点

  39.13倍多一点

  412.93倍多一点

  (3)小结

  a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)

  b、结合圆周率进行爱国主义教育

  师生共同推导计算圆的周长公式:(C=лd或C=2лr)

  D、运用新知识解决数学问题

  (1)学生尝试例题求圆的周长

  (2)基本练习(略)

  设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。

  E、评价体验

  (1)师:这节课研究了什么?

  生1:周长和直径的关系

  生2:圆的周长=直径×圆周率,即C=лd或C=2лd

  (2)师:(出示一棵古树图片)你能测量它的直径吗?

  生答:砍下来量一量

  师问:这个方法简单,你们同意吗?学生思考后回答:

  生1:用绳子绕一圈,这就是周长然后用周长除以л就得到直径

  生2:在古树中间钻个小孔,量一量

  生3:用四个木头搭成一个正方形,边长就是直径

  (3)师:你能根据今天所学的知识计算你家到学校大约有多远吗?(用计数器的跳绳作提示)学生讨论后回答:

  生1:量一量车轮的直径算出周长,再数数车轮转动了几圈,算一算就行了。(师提醒:那不是最安全)

  生2:用根长绳让它跟着轮子转

  生3:装一个象跳绳一样的计数器,再算一算。

  师:对!摩托车的里程表就是根据这个原理,它就像一个乘法运算机器,车轮的周长是固定的,转数是变动的,从你家到学校的距离之所以能显示在里程表上,就是车轮周长乘以转动的圈数得到的。

  设计意图:通过学生动手、动脑、动口,自主地探究知识,发现已知直径(半径)求圆周长的方法,并通过一定的基本训练后学生已经形成了一定技能,如何再让这些数学知识回到生活,让学生感到所学的数学知识有用呢?我设计了测量一棵古树的直径和计算你家到学校大约有多远这样两个问题,为学生提供广阔的讨论空间,因为这些问题就在学生的身边,会让学生感到“有想头”、“有意思”,学生也愿意反复讨论这些问题。这样可以点燃学生的创新意识、创造性思维的火花。

  三、实践反思

  1、联系学生生活实际,有利于激发学生学习的兴趣。

  华罗庚指出,对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。本节课一开始出示摩托车的里程表,有计数的跳绳,是学生非常熟悉的,贴近学生生活的实际,体会到“圆的周长”和我们的生活是息息相关,大大调动了学生学习的积极性,并为后面学生解决一些实际问题,培养学生的创新意识埋下伏笔。

  2、让学生带着问题去学习,有利于学生主动探索知识

  美国数学家哈尔莫斯(P.Rhalmos)有句名言:问题是数学的心脏。我国著名教育家顾明远也说过“不会提问的学生不是好学生”,“学问就是要学会问”。但是怎样才能让学生感到有问题呢?教师必须启发学生主动想象,去挖掘去追溯问题的源泉,去建立各种联系和关系,使学生意识到问题的存在。我在本节课先创设一个问题情境,使学生感悟到:必须先要知道圆的周长,而直接测量圆的周长很麻烦,有没有更简单的办法?促使学生去寻找解决问题的办法,通过“猜想——验证”“探索——发现”圆周长的计算方法后,又提出测量一棵古树的直径你有什么好主意?如果测量你家到学校的距离你有什么办法?这是两个和学生生活紧密结合的问题,学生有感而发的方法有很多,学生的回答应该说是非常精彩的,这既让学生灵活运用了圆周长公式(可以测量周长再计算直径)并呼应了课堂的导入,又激发了学生的学习兴趣,激活了学生的思维,培养了学生的创新意识。其效果真可谓“鱼与熊掌”兼得。

  3、提高应用意识,努力体现课堂教学的开放性。

  生活问题数学化,数学知识生活化,把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,我在本节课的最后部分安排了两个生活问题,并都是“以你……”的语气陈述,努力使学生能身临其境,当解决问题的主人,提高学生的应用意识,由于我们身边的问题答案往往不是唯一的,如计算你家到学校大约有多远?许多同学都想到先数自行车车轮转了多少圈,用周长乘以圈数,对于怎样数车轮有的同学提出直接数,还的同学甚至想到了用一根长绳让它跟着轮子转,看看它转了多少圈(这些都是学生直接的生活经验),也有一些同学提出了在自行车上装一个计数器的办法,不但培养了学生开放型的思维方式,还激发了学生去动动手的愿望。

  4、要讨论和研究的问题

  (1)在用绳绕的方法验证周长是直径的三倍多一点,有没有必要再让学生去实践,通过计算再验证周长和直径的关系?

  (2)如果在发现知识过程中人有一小部分同学得出了方法,教师是想设法再让其他学生继续探究、发现,还是让这些同学代替老师把答案告诉大家呢?

《圆的周长》教学设计14

  教学目的

  1、理解圆周率的意义。

  2、理解周长的概念,并掌握圆周长的计算公式和推导过程。

  3、能运用公式求圆的周长或直径、半径。

  重点

  圆的周长计算公式的推导,能利用公式正确的计算。

  难点

  深入理解圆周率的意义及圆周长计算公式的推导。

  教具:两个大小不同的圆、直尺一把、绳子一根、计算器和表格

  一、复习导入(4分钟)

  (一)出示菜板和圆桌图

  师:

  1、这两个都是什么平面图形

  2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)

  3、还有什么不同?(圆的大小不同,圆的半径不同)

  4、也可以说是圆的直径不同。

  (二)出示图与对话框

  师:

  1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)

  2、问:铁皮的长度实际上就是圆的什么?

  预设:

  1、圆一周额长度(这个长度就是圆的周长)或

  2、圆的周长。

  二、新课教授

  (一)活动一:摸圆的周长(3分钟)

  师:

  1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。

  2、从哪里开始到哪里结束?

  预设:

  1、从这个地方开始,也在这里结束。

  2、小结:起点和终点是同一点。

  3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)

  4、围成圆的一周的`曲线的长是圆的周长。

  (二)活动二:周长的测量(4分钟)

  师:

  1、曲线图形的周长你会测量吗?(不会)

  2、同方谈论一下,你想要怎样测量。

  3、1生说绕绳法。他的方法听懂的举手。

  预设:

  1、听懂人多,师演示一下。

  2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。

  师:

  1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。

  2、教师观察指导。

  (三)汇报演示(4分钟)

  师:

  1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。

  2、这个办法有什么缺点?(不精确会产生误差)

  3、除了这个方法还有没有其他办法?

  预设:

  1、生能主动说出。

  2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)

  3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。

  师:

  1、生自己操作

  2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。

  3、测量中英注意什么?有误差吗?听懂的同学举手。

  4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)

  (四)动图播放绕绳法和滚动法

  1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。

  2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。

  3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)

  4、为什么?(圆的大小或圆的半径、直径不一样)

  三、猜想并探索(15分钟)

  (一)猜想(4分钟)

  1、直径不一样周长就不一样,那周长和直径有什么关系呢?

  2、你想把周长和直径怎样比?(周长除以直径、周长减直径)

  3、可以研究周长和直径吗?(不可以,每依据)

  4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)

  5、用你想用的方法研究一下周长与直径的关系。

  6、生在黑板上记录“周长÷直径”、或“周长减直径”。

  (二)探索(8分钟)

  1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。

  2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。

  3、它叫圆周率,读作π,通常计算式取3.14。

  (三)公式推导(3分钟)

  1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)

  2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?

  3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)

  四、巩固练习(10分钟)

  (一)基础题一道

  (二)能力提升两道

  (三)拓展题一道

  五、课后作业布置

《圆的周长》教学设计15

  【教学资料】

  课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习

  【教学目标】

  1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题

  2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。

  3、培养学生创新思维潜力。

  4、透过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。

  【教学重点】

  探索圆的周长公式

  【教学难点】

  对圆周率π的理解

  【学具准备】

  每四个学生一组

  1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个

  2、直尺一把

  3、细绳一条、两根长31.4厘米的细铁丝

  4、实验表格

  5、计算器

  【教具准备】

  实物投影议、电脑

  【教学过程】

  一、设疑导入、培养创新意识

  1、电脑演示:有甲、乙两学生争论。

  甲说:“我脑袋大。”

  乙说:“我脑袋比你在大。”

  师:“如果你是裁判员应如何评判,两人才能都服气?”

  2、学生四人小组讨论

  请学生说一说自己的方法

  甲生:“看谁的脑袋大。”

  师:“如果看不出来怎样办?”

  乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”

  师:“十分好!很有创意。”

  丙生:“用绳绕头一周,测量绳的长度。”

  师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。

  二、动手尝试操作,探求新知

  1、动手尝试操作

  (1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。

  圆的周长c(厘米)

  直径d(厘米)

  周长÷直径(c÷d)

  1

  2

  3

  4

  (2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。

  讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。

  (3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。

  2、探索规律

  (1)师将填好的实验表格在实物投影议上出示。

  学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。

  (2)思想教育

  师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约20xx年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。

  教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。

  师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”

  生:“不能”。

  师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”

  (3)推导圆周长公式

  师:“从公式看出,明白什么条件能够求出圆周长?”

  生:“直径、半径。”

  师:“如果圆的周长已知,怎样才能求出圆的`半径或直径?”

  三、圆周长公式的应用(尝试练习)

  1、出示例1

  学生尝试练习,找学生板演,师生共同讲评。

  2、完成例1下面的“做一做”。

  3、出示例2

  学生尝试练习,找学生板演,师生共同讲评。

  4、完成例2下面的“做一做”题目。

  5、第8页练习二的1、2、3题。

  四、再次尝试操作、第二次创新

  1、求出人脑袋的横切面的半径

  (1)利用桌面上现有的测量工具,透过计算,怎样求出你脑袋的半径?

  (2)四人一组互相合作,动手测量,计算时可利用计算器。

  (3)将运算的结果对全班公布,并说明理由。

  2周长相等的正方形、圆,谁的面积大

  (1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?

  师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”

  (2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。

  五、全课小结

  1、这天我们学习了什么资料?

  2、经过这节课的学习,你有什么收获?

  3、师:“这天我们透过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。

  六、作业

  第9页练习二中的第9、10、11题。

  板书设计

  圆的周长

  围成圆的曲线的长叫圆的周长

  c=πdc=2πr

  例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  (生板演)3.14×0.95

  =2.983

  =2.98(米)

  答:这张圆桌面的周长约是2.98米。

  例2、一个圆形水池,周长是37.68米。它的直径是多少米?

  (生板演)解:设水池的直径是X米。

  3.14×X=37.68

  X=12

  或:37.68÷3.14=12(米)

  答:水池的直径是12米。

【《圆的周长》教学设计】相关文章:

《圆的周长》教学设计11-28

圆的周长教学设计08-30

《圆的周长》教学设计10-22

荐圆的周长教学设计10-05

《圆的周长》教学设计(优秀)10-06

圆的周长教学设计(推荐)09-05

【热】圆的周长教学设计01-04

圆的周长教学设计【优选】04-19

(荐)圆的周长教学设计05-19

[热门]圆的周长教学设计05-29