《圆的周长》教学设计(优秀)
作为一名老师,编写教学设计是必不可少的,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。我们应该怎么写教学设计呢?以下是小编帮大家整理的《圆的周长》教学设计,仅供参考,希望能够帮助到大家。

《圆的周长》教学设计1
各位领导、评委大家上午好!我今天说课的题目是《圆的周长》
一、教材分析
1、教学内容
这节课是人教版小学六年级数学第四单元《圆的周长》
第一课时
2、教材所处的地位
这节课是建立在求长方形、正方形的周长知识为学习基础的、是前面学习“认识圆的”进一步深化。为今后进一步学习圆的有关知识奠定基础,是相当重要的学习内容。
3、教学目标
(1)知识目标:让学生了解圆周率的定义。
(2)能力目标:让学生动手操作,利用绳测法、滚动法认识圆的周长并掌握圆周长的计算公式。
(3)德育目标:通过对学习向学生渗透爱国主义教育。
4、重点难点
重点:掌握圆周长的计算公式
难点:圆周长公式的推导
二、学情分析
这节课的授课对象是小学高年级的学生,作为小学高年级的学生,他们已经有了一些生活实践的经验积累了一些教学知识。基本具备了分析问题、归纳问题、概括问题的能力。因此让他们在自主快乐的'情境中学习。是他们感受到学习不是枯燥乏味的,而是一件快乐有趣的事情,从而乐意去学。
三、说教法学法
现代教育是以人为本的教育,小学数学新课标规定应着重培养学生的探索意识、探索能力、探索思维,拓展探索思维的空间。改变以前机械说教,沉闷程式化的教学设计。
把课堂还给学生,充分发挥学生的主动性。因此,我采用的是洋思教学模式,即“先学后教、当堂训练”,在我的课堂上,学生结合自学指导,认真阅读教材,通过自主探究、合作交流、讨论来掌握新知。既培养了学生的探索意识,又让学生在课堂互动的快乐氛围接受新知。
四、说教学过程
我是按以下四个层次设计教学过程的:
1、复习旧知识、导入新课
(1)让学生找出图中直径和半径,并说出什么是圆的直径和圆的半径?直径和半径的长度有什么关系?
(2)什么是长方形的周长?什么是正方形的周长?
通过对就知识的复习为新授内容做了准备和铺垫。
2、出示自学指导、指导学生认真阅读教材,掌握本节课的知识。
自学提示:
(1)课本63页向我们介绍了两种测量圆周长的方法,一种是滚动测量法,另一种是绳测法,拿出个小组准备的直径是10cm、15cm、20cm的圆。完成下列表格:
周长直径周长/直径(保留两位小数)
(2)探究圆的定义?直径不同的圆,周长与直径的比值一样吗?这个比值叫做什么?用哪一个字母表示?读作什么?在通常计算时∏值取多少?圆周率是哪个国家的数学家谁最早提出的?
(3)根据被除数=除数X商,如果用字母C表示周长,d表示圆的直径,圆周长的计算公式怎样表示?
三、当堂训练、检查自学效果
1、求下面各圆的周长
2、一个喷水池直径是5m,他的周长是多少米?
四、订正学生做题过程中出现的错误(后教)
学生在求圆的周长时,不能正确的应用公式,这时我会告诉学生,已知半径求圆的周长用C=2∏r,已知直径求圆的周长,用C=∏d。
五、本课小结
闭上眼睛想一想,通过本课的学习你有哪些收获?学生在回忆梳理的过程中再现了本课的知识点。
六、课堂作业、当堂批改(不少于10分钟)
1、用C表示圆的周长,d表示圆的直径,r表示圆的半径,圆的周长计算公式可写作()或()。
2、求下面各圆的周长
4
3、完成下列表格
半径rcm直径dcmCcm
4
1.2
12.56
4、已知圆的直径是20m求圆的面积?
附板书设计:圆的周长
1、圆的周长的定义
2、圆周率的定义即表示方法
3、圆周长的计算公式C=∏d或C=2∏r
《圆的周长》教学设计2
教学内容:圆的周长
内容分析 :通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。
学生起点 :对圆和周长的概念已有初步的认识
教学目标: 1、理解圆周长的概念,理解圆周率的意义。
2、使学生掌握圆周长的计算公式及公式的推导过程。
3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。
4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。
教学重点 :圆周长公式的推导。
教学准备 :直尺; 两个有厚度、标明直径、不同规格的圆片;棉线。
教学流程:
一、复习引入
1、学生说圆的认识;
(你对圆的知识有哪些了解)
2、揭示课题:
今天我们要一起来学习圆的周长。(板书:圆的周长)
二、新授
1.认识圆的周长;
(1)师拿出圆片让学生指出圆的周长;
(哪一部分是圆的周长)
(2)描出两个规格不同的圆的周长;感受圆的周长;
(请你描出练习纸上两个圆的周长。)
(哪一个周长长?)
(3)揭示圆周长的概念;
(用自己的话说说什么是圆的周长)
师小结:围成圆的曲线的长叫做圆的周长;
围成圆的一周的长叫做圆的周长。(幻灯出示)
2、理解、运用圆周长的.测量方法。
师问:圆的周长长短不一,该怎么测量?
生边演示测量圆片周长,边介绍绳测法。
要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。
学生汇报测量结果,师记录。
圆片测量记录单:
3.探究圆的周长与直径的关系。
(1)猜测跟圆周长相关的量;
(猜测一下,圆的周长长短跟什么量有关?)
计算记录单中周长与直径的比值,得数保留两位小数;
学生反馈比值;
周长(厘米)
直径(厘米)
周长与直径的比值(得数保留两位)
(2)认识圆周率
①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。
(板书:圆周率 π )
②幻灯片展示圆周率的由来,学生自主阅读;
总结圆周长的计算公式。
①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?
提示:从测量记录单中找取。
②如果周长用C表示,字母式是怎样的?
③周长跟半径又是怎样的关系呢?字母式呢?
(板书:圆周长=圆周率×直径 C=πd 或
圆周长=2×圆周率×半径 C=2πr
三、巩固练习
基本练习
一个圆的直径是10米,它的周长是多少? 一个圆的半径是10米,它的周长是多少? 判断。
只要知道圆的直径或半径就可以计算圆的周长。( ) 大圆的圆周率大,小圆的圆周率小。 ( ) 圆周率的值就是3.14. ( ) 4圆的周长是直径的 倍。 ( ) 能力拼比:
两个小朋友同时同速从A点到B点,谁先到达?
B
A
四、总结:学习了这堂课你有哪些收获?
《圆的周长》教学设计3
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会透过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
正确计算圆的周长。
教学难点:
理解圆周率的意义,推导圆周长的计算公式。
教具准备:
多媒体课件三套、系绳的小球。
学具准备:
塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。
教学过程:
一、以旧引新,导入新课
1.复习长方形、正方形的周长。
我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?
2.揭示圆的周长。
(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。
(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?
二、动手操作,引导探索
1.测量圆周长的方法。
(1)提问:你知道了什么是圆的周长,还想知道什么?
我们先研究怎样测量圆的周长,请同学们分组讨论一下。
把你们讨论的结果向大家汇报一下?学生边回答边演示。
(2)教师甩动绳子系的小球,形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?
2.认识圆周率。
(1)探讨圆的周长与直径的关系。
①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。
请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?
课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)
提问:你们是怎么看出来的圆周长跟直径有关系?
②学生测量圆周长,并计算周长和直径的比值。
圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。
生测量、计算、填表。在黑板上出示一组结果。
请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的`周长是直径的3倍多一些。)
这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)
(2)揭示圆周率的概念。
通过以上的观察你发现了什么?
任何圆的周长总是直径的3倍多一些。
那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)
(3)了解让中国人引以为自豪的圆周率的历史。
关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?
很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……
3.推导圆周长的计算公式。
根据刚才的探索,你能总结出圆周长的计算公式吗?
学生推导圆周长计算公式:c=πd;c=2πr。
要求圆的周长,你必须知道什么?(直径或半径)
4.运用公式计算。
(1)求下面各圆的周长,只列式不计算。
课件演示:由第一个圆逐渐变大,分别出示第二个、第三个,提问:怎样求这个圆的周长?(生答需测量出这个圆的直径或半径,师给出直径0.8分米,学生计算它的周长。)
(2)出示例1。
①在学生读题后提问:求这张圆桌面的周长是多少米,实际上就是求什么?计算这道题应注意什么?
②学生尝试练习,反馈评价。
③提问:如果告诉你的不是这张圆桌面的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第112页“做一做”。
(4)看书质疑。
三、运用新知,解决问题
1.下面的说法对吗?并说明理由。
(1)圆的周长是它直径的π倍。()
(2)大圆的圆周率大于小圆的圆周率。()
(3)π=3.14()
2.测量一圆形实物直径,计算它的周长。
3.有一奶牛场准备用粗铁丝围成一个半径是12米的圆形牛栏(如图),请同学们帮忙算一算,至少需要买多少铁丝才能把牛栏围3圈?(接头处忽略不计。)
四、总结全课,储存新知。
这节课你自己运用了哪些学习方法,学到了哪些知识?
五、思考题。
课件演示:大圆的周长和两个小圆的周长之和同样长吗?
《圆的周长》教学设计4
【教学内容】
《义务教育课程标准试验教科书. 数学》(苏教版)六年制五年级下册第十单元第98-102页,例4,例5和例6及练一练和练习十八。圆的周长,周长计算公式。
【教材分析】
这部分内容是在学生认识圆的基本特征的基础上,引导学生探索并掌握圆的周长公式。首先引导学生从生活经验出发,借助观察、比较进行猜想,再具体描述圆的周长的含义,并让学生通过进一步的思考,认识到圆的周长与直径的关系。最后引导学生根据对测量圆周长活动过程的理解,推导出圆的周长公式。然后让学生应用刚刚掌握的公式计算圆的周长,解决简单的实际问题,巩固对公式的理解。
【教学目标】
1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。
3、对学生进行爱国主义教育。
【教学重点】
圆的周长和圆周率的意义,圆周长公式的推导过程。
[教学难点]
圆周长公式的推导过程。
【教学准备】
多媒体课件、实物投影、圆、绳子、直尺、圆规等。
【教学过程】
一、情境创设,生成问题
1、出示一个正方形花坛和一个圆
问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?
预设一:看哪个跑得步子多。
预设二:计算它们的周长,进行比较更为简便。
2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系?
预设一:C=(a+b)×2
预设二:C=2a+2b
3、什么是圆的周长?
让学生上前比划,圆的周长在那?那一部分是圆的周长?
得出定义:围成圆的曲线的长叫做圆的周长。
二、探索交流,解决问题
(一)圆周长的公式推导。
1、探索学习。
(1)你可以用什么办法知道一个圆的周长是多少?
(2)学生各抒己见,分别讨论说出自己的方法:
预设一:用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。
预设二:把圆放在直尺上滚动一周,直接量出圆的周长。
那么用一条线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?
用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。
设计意图:引导学生从生活经验出发,借助观察、比较进行猜想:到底怎样测圆的周长。进而激发学生进一步探究圆的周长是如何求出来的兴趣。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的.直径,周长,并计算周长和直径的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系?
预设:都是3倍多,不到4倍。
(3)你有办法验证圆的周长总是直径的3倍多一点吗?
(4)阅读课本P102,介绍圆周率,及介绍祖冲之。
∏=3.1415926535…… 是一个无限不循环小数。
3、得出计算公式。
圆的周长=圆周率×直径
C = ∏d或 C = 2∏r
设计意图:教材通过示意图对这两种方法做了清楚的说明,这有利于学生学会具体的测量圆周长的方法,又能使学生从中体验“化曲为直”的策略。
(二)、解决新问题。
1、解决情境题中的问题。
学生独立完成,小组内订正。
2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车约转动多少周?
小组内想出解决的办法,并在全班交流。
预设一: 已知 d = 20米 求:C = ?
根据 C =πd 20×3.14=62.8(m)
预设二: 已知: 小自行车d = 50cm
先求小自行车C = ? c=πd
50cm=0.5m 0.5×3.14=1.57(m)
再求绕花坛一周车约转动多少周?
62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车约转动40周。
设计意图:引导学生根据圆的周长公式列式解答。这样有利于学生提高综合应用数学知识和方法解决实际简单的实际问题,巩固对公式的理解的能力。
三、巩固应用,内化提高
1、求下列各题的周长。
书本102页练习十八的第1、2题
2、判断正误。
(1)圆的周长是直径的3.14倍。 ( )
(2)在同圆,圆的周长是半径的6.28倍。( )
(3)C =2πr =πd 。 ( )
(4)半圆的周长是圆周长的一半。 ( )
设计意图:通过这些小题的练习,让学生进一步加深对相关知识的理解。
四、回顾整理,反思提升
通过这节课的学习你都知道了什么?还有什么不懂的呢?
《圆的周长》教学设计5
一,指导思想和理论依据:
新课程标准:有效的数学学习活动不能简单依靠模仿和记忆,亲身实践,独立探索和合作是学生学习数学的重要途径。数学学习活动应该是一个活泼,积极和丰富的人格过程。
根据这个概念,在本课设计中,我强调两点,一是让学生主动体验猜测动手操作,练习和演示过程的数学结论;第二是让学生,也是学生的自主空间,自我探索,合作和交流的学习方法在整个教室。
二,教材与学习分析:
教科书是在掌握了矩形和正方形圆周的学生的基础上学习的,以及对圆的初步理解。它是学生初步学习曲线图形的基本方法的开始,是学习圆形区域和未来学习圆柱形,锥形等知识的基础。学习分析:虽然学生有计算线图长度的基础,但第一次接触曲线图形,更抽象的概念不容易理解,推导出圆周的计算方法,理解pi的意义有一些困难。
三,教学目标,关键和难点:
1,知识和技能:
学习学生理解圆的周长,掌握圆的圆周的计算,理解pi的含义,并正确应用公式来解决简单的实际问题。
2,工艺和方法:
(1)通过组织学生观察和实验活动,指导学生体验猜测归纳,一般学习过程,理解pi。
(2)体验圆周圆周的发现,探索过程,培养学生分析,抽象,概括和发现法律的能力。
3,情绪和态度:
(1)通过学生的动手操作,找到,激发学习兴趣,让学生体验到探索问题的乐趣;
(2)结合引进pi,使学生受爱国科学精神的教育。
(3)在解决问题的过程中,增强意识的应用。
教学重点:
学生使用实验的手段,通过测量,计算,猜测圆的周长和直径之间的关系,验证过程的理解和掌握圆的计算方法。
理解pi。
教学准备:
⒈圆形对象实物,课件。
⒉每个学生准备三种不同尺寸的`光盘,一条线,一条尺。
四,教学方法:
1,独立探索法。通过实践学生的实践,找到长途的测量学生,培养学生动手操作的能力,激活学生思维。
2,合作交流法。合作沟通是学生学习数学的主要方式。通过学生的团结合作,自我探索,讨论交流,培养学生团结合作精神,激发学生对学习兴趣。
五,主要教学环节和设计:
通过以下链接教授本课:
一,创造形势,初步认识
二,合作交流,探索新知识
三,实际应用,解决问题四,谈论收获,课外推广
六,教学过程:
第一个链接:创建情境,初步感觉的分裂:
哪些学生会骑自行车?当骑车时,车轮向前滚动一周,他们旅行多长时间?如何计算?(课件用于显示滚动向前滚动视频的滚轮。)要求圆形周长的距离有多长。
老师:了解如何计算今天的圆周长。
这部分的设计目的:从熟悉自行车的学生开始,让学生感觉到车轮滚动周是圆周的圆周,刺激学生学习新的兴趣。
第二环节:合作交流,探究新知识
(A)通过以下活动直观地感知圆的周长,帮助学生了解圆的周长。
1,请指出老师在圆形物体的手中。准备一些硬币,杯子,让学生在圆圈上滑动触摸等方式来理解和了解圆周的圆周。
2,分析矩形,正方形和圆周的圆是否不同?
3,指的是手指,他们自己手在圆片的圆周上的描述。
设计意图:让学生双手触摸,圆周的初始感知是一周的周长。而且还增强了知觉知识的周边,并使图像理解周围的意义。
(B)探讨计算方法的周长
圆周计算公式中扣除这个内容,我安排了三个链接:
1,揭示矛盾,导致探索新知识的愿望。要求学生考虑我们的手,有什么办法来衡量他们的周长吗?
预设几种情况:
(1)滚动用绳子包起圆圈并拉直;
(2)折叠圆纸几次,然后测量计算;
总结:以上几方法律是改变歌曲是直的。
课件展示地球图片。
如果你想计算地球赤道周的长度,用绕组法,滚动法显然不能测量怎么办?我们需要探索圆周的一般方法。
设计意图:这个过程允许学生理解绕组,滚动方式有限,触发其计算公式的探索计算的热情和必要性,以便进一步研究问题床面的计算周长。这种矛盾,更多的是刺激学生的好奇心。 2,实验操作,探究圆周的计算方法在本文的内容中,为了探究pi,理解pi是本课的难点,所以我设计学生进行子组合作,通过猜测总结结论要做。
(1)猜想,目的是让学生了解圆周和直径之间的关系,着重解决圆周和什么相关问题。
老师:圆的圆周是否与它相关?
圆的圆周与其直径有关。圆直径长,圆周大;直径短,周长长。
(2)实验验证,目的是让学生找到圆周和直径之间的固定倍数关系,着重解决圆周和直线什么样的物理关系问题。
老师:我们知道方形周长是4倍,那么圆的圆周是直径的几倍?我们可以找到一般的方法来找到一个圆周像一个正方形的圆周吗?
请分组学生做一个小实验,请使用工具的手,用你最喜欢的方式验证圆周长和直径的多重关系,记录在窗体中。请按照我们小组使用什么方法,过程如何?的顺序报告实验。
面板报告:
健康:我们测量的第一个圆的直径是10厘米,圆周是31厘米,圆周是直径的3.1倍。第二圆直径为2cm,圆周为6.5cm,圆周为直径的3.25倍。第三圆直径为5.5cm,圆周为16.5cm,圆周为直径的3倍。
老师:通过计算你发现什么?
健康:每个圆的圆周是其直径的三倍。
问题:它不是所有的圆周和它的直径有这种关系吗?
最后,老师和学生一起总结:圆的任何圆周总是其直径的长度的三倍。
老师:由于测量错误,导致结果不一样,是正常的。您的研究结果非常接近数学家的结果。谁知道我们称之为这个3倍多?
健康:
老师:你对pi有什么认识?
这是数学家数量的三倍以上,仔细计算后是一个固定数,我们称之为pi的倍数。读为π。发现pi的最杰出贡献者是祖崇志。 Pi是一个无限小的数字,在当今科学技术的飞速发展,计算机已经计算到十亿后的小数点。小学阶段约为3.14。黑板:π≈3.14(课件生成相关信息)
设计意图:通过学生在小组操作,沟通,观察等活动中,见证了知识的发现,了解目的。一些学生早就知道,pi的知识是在交换教师和学生,反映学生为主体获得的。祖崇志的事迹是爱国主义教育的一个很好的例子。使学生感受到中国深厚的文化,发展学生的情感态度价值观目标。
(3)得出结论:你知道计算方法的周长吗?
健康:知道。黑板公式:c =πd,c =2πr
设计意图:推导公式的圆周,解决圆周的问题,圆周的计算只是一个问题。
第三环节:实际应用,解决问题
这部分是使用我们探讨的结果,也就是使用圆周长公式来解决生活中的实际问题。
1,解决课堂上提出的问题:车轮向前滚一周,行程多长?这样就结束了回声。
2,设计三者有一定的实践梯度:①d = 5米,c =?
②r= 5cm c = ③c = 6.28 m d = 3,区分对错,下面的语句对吧?
①π= 3.14()
②大圆的圆周小于小圆的圆周。 ()
③圆的圆周是其半径的2π。 ()
意图:关于pi的设计判断是帮助学生巩固新概念,加深对pi的理解。
第四个链接:谈论收获,课外推广操作:
赤道象地球带,长约40,000公里。你知道地球的半径是多少?
设计意图:在课程结束时,我设置了在室外的延伸的赤道的回声前面。这个设置,课堂教学延伸到课外,提高学生的学习能力。
你有什么?(引导学生学习内容,学习方法,情感体验等)。
七,黑板设计:
圆周
圆是圆的圆周÷直径= pi C÷d =π3.14×20 = 62.8(英寸)
C =πdA:车轮向前滚动一周,行驶62.8英寸。
《圆的周长》教学设计6
教学内容
苏教版《义务教育课程标准实验教科书数学》五年级(下册)第98~99页例4、例5以及相应的“试一试”“练一练”,练习十八第1~4题。
教学目标
1、使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。
2、使学生在活动中培养初步的动手操作能力和空间观念。
3、结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。
教学过程
一、操作导入
谈话引入,并指名说说怎样测量圆的直径。
每个同学拿出事先准备好的三个圆形物体(圆形铁环、一元硬币、塑料胶带或其他任意一个圆)。
学生独立测量圆的直径,比一比谁量得最精确。
组织交流。
[思考:量直径是上一节课的内容。在教学新知之前进行复习,意图有两点:一是因为直径与周长的关系是本节课的主要研究内容,量直径能为研究圆周率和推导圆的周长公式服务;二是让学生练习比较精确地测量直径,为接下来比较精确地测量圆的周长做必要的准备。]
二、揭示课题
谈话:今天这节课我们一起来研究圆的周长。(板书课题:圆的周长)
三、自主探索
1、出示圆形铁环。
谈话:这是一个用铁丝围成的圆,谁上来指一指这个圆的周长?(学生指出圆的周长)同桌讨论一下,什么是圆的周长?(引导学生概括圆的周长的含义)
提问:你能量出这个铁丝围成的圆的周长吗?
学生动手尝试测量。(可能会想到把铁丝剪开、拉直,再测量铁丝的长。)
指名介绍方法,并上台进行测量演示。
2、出示一元硬币。
提问:你能测量这枚硬币的周长吗?
指名说说方法,学生动手测量。
3、猜测联系。
提问:对于刚才这几种测量圆周长的方法,你有何评价?
谈话:回忆一下,我们以前是怎样求长方形、正方形的周长的?
引导:是啊,用绕线法和滚圆法测量圆的周长比较麻烦,测量的结果也不够准确,我们应该寻找更简便的计算圆周长的方法。那么,圆的周长与它的'什么有关系呢?(与直径的长短有关)
追问:圆的周长与它的直径之间可能有怎样的关系呢?(学生提出各种猜想,也可能会提出圆的周长等于直径的3、14倍)
谈话:大家能提出不同的猜想,这很好!不过猜想只是猜想,圆的周长与直径到底有什么关系,还需要我们进一步研究与验证。
4、研究验证。
出示活动要求:
(1)每个同学选择一个圆形物体,分别测量它的直径和周长,并计算圆的周长除以直径的商。
(2)把你们小组测量与计算的结果整理在下面的表格里(表格略)。
学生活动后,以小组为单位,组织汇报。
提问:通过对实验结果的分析,你有什么发现?
小结:其实,圆的周长总是直径的3倍多一些,而且这个倍数是一个固定不变的数。我们把圆的周长除以直径的商称为圆周率。一般情况下,人们用字母π表示圆周率。它是一个无限不循环小数,它的值等于3.1415926……为了计算方便,我们取它的近似值3.14。(板书:圆周率π)
谈话:关于圆周率还有一段值得我们骄傲的历史呢!请同学们打开书本,读一读第120页下面的“你知道吗”。
提问:读了这段介绍,你知道了什么,有什么感想?还想知道些什么?
提问:为什么我们研究的结果和圆周率的实际值有一定的误差?
[思考:量铁丝围成的圆、一元硬币、塑料胶带等圆形物体的周长,是看似简单、重复的操作,但实际上不断激起了学生思维的浪花。第一次量铁丝围成的圆的周长,几乎所有的学生都能想到将铁丝围成的圆剪开、拉直成一条线段再测量,在操作中充分感受了“化曲为直”的数学思想。量一元硬币的周长,则不能直接剪开、拉直,而必须采用绕线法或滚圆法,这在引导学生灵活解决问题的同时,又使学生感受到实际测量得到周长的方法并不方便,从而产生探究圆周长计算公式的心理需求。在此基础上,再让学生分组自由选择圆形物体测量周长,探究圆的周长和直径的关系,激发了学生参与学习活动的积极性。]
5、推导公式。
提问:根据圆周率的意义,怎样求圆的周长?(板书:圆的周长=圆周率×直径)
提问:如果用C表示圆的周长,怎样用字母表示圆周长的计算公式呢?(板书:C=πd)
谈话:你能运用圆周长的计算公式解决一些实际问题吗?
出示“试一试”。
学生独立解决后,组织反馈。
四、练习巩固
1、判断下面的说法是否正确。
(1)圆周率等于3.14。
(2)圆的周长总是直径的π倍。
(3)一个半圆形的周长是这个圆周长的一半。
学生判断后,让学生说一说自己是怎
样想的。
2、一个圆形木桶的外直径是4.8分米,在它的外面加一道铁箍,这道铁箍长多少米?(接头处忽略不计)
让学生说一说题目的意思,再独立解答。
3、地球赤道的半径约是6278千米,绕赤道走一圈有多少千米?
先让学生估计地球赤道的周长,再独立计算。
五、课堂总结(略)。
《圆的周长》教学设计7
课题
圆的周长
例题
教学 目标
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能解决简单的实际问题。
2、使学生通过操作、计算,发现规律,培养抽象、概括的能力和探索意识。
3、通过介绍圆周率的史料,使学生受到中国古代在数学方面的成就。
手 记
我在设计圆的周长这节课时,对
圆周长概念的教学做了淡化处理,新教材对概念和老教材比已经大大弱化了。目标是让学生知晓,不必死抠字眼。我的设计,力图在已有知识和新知识之间找到衔接点,故而在正方形内接圆这一点上,为探究直径和圆周长的关系做了新的尝试。之后的教学,希望在自主探索中培养学生的动手操作能力。先让学生独立思考,然后小组合作,大胆猜想圆的周长可能与什么有关,再引导学生通过实际计算几个大小不等的圆形物体的周长与直径的比值,使学生明确自己的猜想是否正确,再让学生在动手操作、测量、观察和讨论中经历探索圆的周长公式的全过程,充分发挥学生学习的主体性,激发学生学习数学的兴趣。
重难点
教学重点:圆周长公式的推导。
教学难点:圆周率的意义。
教学过程
资源
目标
学与教
一、开门见山,直奔主题
二、渗透“转化”,激发兴趣
三、合作探究,发现规律
四、运用新知,解决问题。
五、知识回首,概括总结
师生谈话,生活中的周长概念,教具。
教具、学具,学生已有的生活经验
学具、计算器、
实验报告单
习题
实物感知,触摸圆的周长,既激发学生的学习兴趣同时,也形象的让学生建立圆周长的概念。
让学生探索测量圆的周长的方法,渗透“化曲为直”的数学思想
测量的局限性引出寻找计算方法的必要性。
从猜想与观察中初步探寻周长与直径的关系。
通过操作,收集数据,计算比对后发现规律。
从周长与直径的比值引出圆周率的概念
从圆周率概念中演变出圆周长的计算公式
巩固运用、深化知识
学生对整节课所学知识进行梳理
(一)谈话引入,揭示课题。
上节课,我们一起学习了“圆的认识”,今天我们一起来研究圆的周长。(板书课题)
1、拿出一个圆片问:什么是圆的周长?请你指出老师手上圆的周长?再指出自己准备的圆形物体的周长。
2、提问:圆的周长和我们以前学过的长方形和正方形的周长有什么相同的地方?又有什么不同?
(出示长方形、正方形、圆的图,让学生进行比较)
3、用一句话概括一下什么是圆的周长。
4、归纳:围成圆的曲线的长叫做圆的周长。
(二)探索测量圆的周长的方法
(1)教师接着问:长方形和正方形的周长,我们能直接用尺子测量出来,但是圆的'周长能直接测量出来吗?比如这样的一个圆(铁丝围成的圆形)
生:拉直了再量一量。
师:为什么要拉直呢?(引出化曲为直的思想)
师再出示圆片问,这个能拉直吗?可以怎样得到它的周长?
你有什么好的方法? (同桌讨论)
汇报:(学生演示)
a、可以把圆在直尺上滚动一周,测出周长。
b、还可以先用绳子绕圆一周,测出绳子的长度,就是圆的周长。
教师评价:同学们想出的方法很好。刚才的方法有一个共同的特点是什么?
生:是把弯曲的线段转化为直的线段来测量。
师:做校服量你的腰围是不是跟这个差不多呢?
师板书:绕线法、滚动法------化曲为直
(3)教师问:这样的方法有局限性吗?举几个例。
生:比如说在操场上画的大圆的周长、广场上的圆形喷泉的周长、溜球绕在手指上旋转一周,形成了圆,它的周长不便用上面的方法。
师:用图片展示嫦娥二号绕月飞行的圆形轨迹,引发学生的感慨:测量的方法有局限性,那么我们就要找出求圆的周长的普遍方法。
(1) 观察并猜想:圆的周长会和什么有关?有怎样的关系呢?
,圆的周长 教学设计
(三个直径不同的圆提示周长与直径有密切的联系。)
(2)观察并思考:正方形与圆有何共同之处,圆的周长会超过直径的4倍吗?至少应大于直径的( )倍。
(三)圆周长的推导。
(1)探索圆周长与直径的关系。
下面我们就来测一测,算一算,看看圆的周长和它的直径有什么关系?
让4人小组的同学进行合作,分别测量出3个圆形物体的周长和直径,并把结果记录在表格中。最后观察数据,有什么发现?
圆
直径(厘米或毫米)
周长(厘米或毫米)
周长/直径(保留两位小数)
圆1
圆2
圆3
我们的发现
(2)反馈。
请学生上台来展示,并且说说发现。
小结:同学们都发现了虽然我们测量的圆的大小不一样,但是圆的周长和直径的比值总是3倍多一点。
(3)教师用软尺绕学具圆一周,再将软尺沿直径绕三次演示3倍多一些,加深3倍多一些的印象。
3、教学圆周率。
师:其实任何一个圆的周长和直径的比值都是一个固定的数。我们把它叫做圆周率。(板书)用希腊字母π表示。
师:什么是圆周率呢?也就是说周长是直径的多少倍?
说到圆周率,老师不得不提起一位我们的祖先。(看63页你知道吗?)
上面的介绍,你有什么感受?
圆周率是一个无限不循环小数,在计算时,一般保留两位小数,π≈3.14。
4、圆周长的计算公式。
师:刚才,我们圆周率是怎样求出来的?(周长÷直径=圆周率)
师:根据圆周率你能求出圆的周长吗?
周长=直径×圆周率
(c=πd)
师:如果用半径求呢?
(c=2πr)
5、从最后的公式中可以看出,什么决定了圆的周长?
(四)解决问题
1、算一算。
求下面各圆的周长。
(1)d=4厘米 (2)r=1.5米
师:求圆的周长必须知道什么条件?
2、判断。
(1)、任何一个圆的周长总是直径的π倍。( )
(2)、圆周率是任何圆的周长和直径的比的比值。( )
(3)、大圆的圆周率比小圆的圆周率大。( )
(五)、谈学习收获:
师:哪位同学能谈谈这节课你的收获与感想?
板书 设计
圆的周长
圆的周长测量: 滚动法、绳测法---------------化曲为直
规律: 圆的周长总是它的直径的3倍多一些。
圆的周长÷直径=圆周率
公式:圆的周长=直径×圆周率
C=πd C=2πr
教学 准备
每小组学生准备:一条绳子、剪刀、一把直尺、3个大小不同的圆。
《圆的周长》教学设计8
教学内容:小学数学实验教材十一册第107~108页“圆的周长”
教学目标:
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2、培养学生的观察、比较、分析、综合及动手操作能力;
3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点:深入理解圆周率的意义。
教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,
以及直尺、绸带,测量结果记录表,计算器,投影资料等
教学过程:
一、创设情境,引起猜想:
(一)激发兴趣
播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1、回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2、认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
[评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿
(三)讨论正方形周长与其边长的关系
1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2、怎样才能知道这个正方形的周长?说说你是怎么想的?
3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
[评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。
(四)讨论圆周长的测量方法
1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2、反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3、小结各种测量方法:(板书)转化
曲直
4、创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5、明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
[评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。
(五)合理猜想,强化主体:
1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩
2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3、正方形的周长总是边长的.4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4、小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
[评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。
二、实际动手,发现规律:
(一)分组合作测算
1、明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。
(二)发现规律,初步认识圆周率
1、看了几组同学的测算结果,你有什么发现?
2、虽然倍数不大一样,但周长大多是直径的几倍?
3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3、这个倍数究竟是多少呢?我们来看一段资料。
(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4、理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5、解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1、如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长=直径×圆周率
C=πd
2、如果知道圆的半径,又该怎样计算圆的周长呢
板书:C=2πr
追问:那也就是说,圆的周长总是半径的多少倍
[评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。
三、引导质疑,深入领会(略)
四、巩固练习,形成能力
1、判断并说明理由:π=3。14()
2、选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()
a、大圆的圆周率大于小圆的圆周率;
b、大圆的圆周率小于小圆的圆周率;
c、大圆的圆周率等于小圆的圆周率。
3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
五、课内小结,扎实掌握
通过今天的学习,你有什么收获?
[评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。
六、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近
[总评]
纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。
《圆的周长》教学设计9
教学目标
1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。
3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教材分析:
《圆的周长》是六年级数学上册第一单元11至13页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学重点:
正确计算圆的周长。
教学难点:
理解圆周率的意义,推导圆的周长的计算公式。
教学过程:
(一)创设情境,提出问题。
师:同学们,你们每天下课都会去学校中间的圆形花园玩。如果我绕着它的最大横截面走一圈,大约走多少米呢?这个问题是求什么呢?(板书课题:圆的周长)我们今天就来解决这个问题。
(二)自主学习,探究新知。
1、自主探究
(1)熟悉圆的周长的概念。
师:同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。
(找个别学生示范)
生:圆的周长是指圆一周的长度。
2、合作交流
在六人小组内讨论交流求圆周长的方法。
3、汇报展示
①用围的.方法。指名演示。问:要注意什么?
②用滚的方法。指名演示。
问:要注意什么?
生:在圆上先作了记号,沿直尺滚动一周。无论是滚动法还是绳围法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)
教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么花园最大横截面的周长,还能用以上这些方法吗?
生:不能。
4、猜想验证
师:圆的周长与什么有关呢?
生1:与直径有关。
生2:圆的周长与半径有关。
师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。
5、探讨圆的周长与直径的关系。
①小组合作
要求学生以六人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,三人同步计算计算圆的周长与直径的商,第六个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。
周长
直径
周长与直径的商(保留两位小数)
1号圆片
2号圆片
3号圆片
②学习“圆周率”
师:同学们,由于各种原因,不同的圆计算出的周长与直径的商可能不完全相同,但实际上,这个商是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)
(3)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?
6、推导公式
师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
师:你能用字母表示圆的周长计算公式吗?
生:C=πd。(板书公式:C=πd)
师:如果已知半径呢?
生:C=2πr。(板书公式:
C=2πr)
师:为什么呢?
生:因为直径是半径的2倍。
师:孩子们,就让我们带着满满的收获,再次看看花园吧!已知花园最大的横截面的直径是15米,如果朱老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。
(三)巩固新知,解决问题
1.判断
(1)圆的周长是直径的π倍。
(2)大圆的圆周率大于小圆的圆周率。
(3)π=3.14
⑴、老师家里有一块圆形的桌布,直径为1米。为了美观,准备
在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
⑵、请同学们以小组为单位,画一个周长是12.56厘米的圆,先
讨论如何画,再操作.
四、课内小结,扎实掌握:
通过今天的学习,你有什么收获?
五、课外引申,拓展思维:
一个茶杯口的直径你有什么方法知道?
结束语:同学们,圆形是一种很漂亮的图案,圆满的人生是我们一生的追求,只有我们努力拼搏、发愤图强才能使我们的人生圆满、国家强盛。
《圆的周长》教学设计10
教学目标:
1、理解圆的周长的概念
2、通过实践操作体验圆周率得出的过程
3、会用圆周长计算公式解决实际问题
4、结合课堂开展爱国主义教育
重难点:体验圆周率的得出过程
教学准备:PPT课件,尺子、绳子,每个同学准备直径是3厘米、5厘米、8厘米的圆一个
教学过程:
一、创设情境,导入新课
圣诞节到了,动画城里的小动物们要召开一次
运动会。兔八哥和鸭小弟参加跑步比赛,场地
如图
猜一猜谁跑得比较快
二、用心感悟,理解概念
a)要求兔八哥所跑的路线,实际上就是求这个正方形的什么?
要知道这个正方形的周长,只要量出它的什么就可以了?能说出
你的依据吗?(突出:正方形的周长与它的边长有关)
b)要求鸭小弟所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。
c)你能用自己的话说说什么叫圆的周长吗?(围成圆的曲线的长叫做圆的周长)
d)指出你手上的圆的周长
三、动手操作,体验过程
1、动手操作,那我们能不能想个办法来求一求圆的周长呢?动手之前老师先来访问几个同学你们打算怎么去测量呢?(在尺子上滚动、用绳子绕)滚动的方法如果没有没有就课件演示一下
2、请同学们用自己喜欢的方法测量任意两个圆的周长并完成表格
圆的直径
圆的周长
周长是直径的几倍?
3、提出猜想
你觉得圆的周长与什么有关呢?引导学生观察手上三个圆,说说你的想法。
跟直径、半径有关。那你觉得有什么关系呢?
直径越长,圆的周长就越长
4、刚才我们说正方形的的周长是边长的4倍,那么圆的周长是否也和圆的直径(半径)成一定的倍数关系呢?
5、汇报展示
观察数据,你有什么发现
得出结论:圆的'周长总是它直径的3倍多一些。板书:3倍多一些。
6、认识圆周率
这个倍数呢是一个固定的数,叫做圆周率。用公式表示圆周率=圆周长÷圆直径。圆周率用字母π表示,读做pai。在1500多年前数学家祖冲之计算出圆周率的值在3.1415926——3.1415927之间,比欧洲早1000多年是当时世界上算最精确的圆周率的值了。经过精密计算,知道π是个无限不循环小数。我们通常取3.14
7、引导出圆周长计算公式:圆的周长=直径×圆周率用字母表示C=πd
四、运用所学,解决问题
1、计算下面圆的周长
两个圆先求出示一个知道直径的圆,利用公式完成练习
第二个只知道半径,抛出问题,这个只知道半径你会求吗?得出求圆周长的另一个公式:圆的周长=半径×2×圆周率字母公式为C=2πr然后完成计算
2、判断题:
1)圆的直径越大,圆周率就越大…………………………………………()
2)圆周长是它直径的3.14倍………………………………………………()
3)半圆的周长就是它所在圆的周长的一半…………………………………()
3解决开始跑步的问题
4、计算我们人民币1元的外周长,不知道条件怎么办?先测量然后计算
5、拓展
五、温故知新,总结课堂
《圆的周长》教学设计11
一、教学内容:圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.
2.培养学生的观察、比较、分析、综合及动手操作能力.
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.
4.结合圆周率的学习,对学生进行爱国主义教育.
三、教学重点:
1.理解圆周率的意义.
2.推导出圆的周长的计算公式并能够正确计算.
四、教学难点:理解圆周率的意义.
五、教学过程:
一、 创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长.
3、师:今天我们就来研究圆的周长。并出示课题
二、引导探究,学习新知
(一)推导圆的周长公式
1.学生讨论
(1)正方形的周长跟谁有关系?有什么关系?
(2)你认为圆的周长和谁有关系?
2.猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?
3.动手操作
(1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。
师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。
师:看哪一组配合好,速度快,较精确。开始!
(2)整理并填写表格。单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
(3)汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?
(三)认识圆周率、介绍祖冲之
1.我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示.
π≈3.14
2.介绍祖冲之
(四)归纳圆的周长公式
1.怎样求周的长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:c=πd
2.圆的周长还可以怎样求?由于d=2r 则:c=2πr
师板书:c=2πr
师问:圆的周长分别是直径与半径的几倍?
三、巩固应用,强化新知
(1)求下面各圆的周长.
1.d=2米 2.d=1.5厘米
(2)求下面各圆的周长.
1.r=6分米 2.r=1.5厘米
(二)判断题
1.π=3.14 ( )
2.计算圆的周长必须知道圆的.直径. ( )
3.只要知道圆的半径或直径,就可以求圆的周长. ( )
(三)选择题
1.较大的圆的圆周率( )较小的圆的圆周率.
a 大于 b 小于 c 等于
2.半圆的周长( )圆周长.
a 大于 b 小于 c 等于
(四)课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
(五)实践操作
请同学们,画一个周长是12.56厘米的圆,
先以小组为单位讨论:画多大?如何画?再操作。
四、课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
《圆的周长》教学设计12
教学内容:圆的周长
教学重点:理解圆周率的意义。
教学难点:探究圆的周长的计算方法。
教学过程:
一、导入新课
故事导入,观看后提问:
1.谁获胜呢?
2.它们对自己跑的距离产生了怀疑,都说自己跑的远……
3.拿起一个圆用手模一摸感知什么是圆的周长。
二、新课
(一)介绍测量方法:
1.绳测法。
2.滚动法。
3.教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的局限性
(二)猜想。(三)实验。
1.小组协作。
周长c (厘米)
直径d (厘米)
周长与直径的比值 (保留两位小数)
……
……
……
2.汇报测量和计算结果。
提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?
学生:发现每个圆的周长总是直径的3倍多一些。
(四)验证结论。
(五)阅读理解有关圆周率的知识。
三、练习
计算方法:
1.能说出圆周长的计算方法吗?
c=∏d c=2∏r(板书)
2.根据条件,求下面各圆的周长。
d=10cm r=10cm
3.(略)
4.现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?
5.拓展练习。
四、总结。
你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。
附:教学设想
一、选择与新知识最佳关系的生长点,巧制课件,导入新课。
“周长”是已学过的概念,但以前讲的长、正方形的周长是指封闭折线的长度,而圆的周长是指封闭曲线的长度。一“直”一“曲”既有联系亦有区别。我抓住这一新知识的连接点导入新课。激发学生的求知欲。
二、调动学生积极主动参与,给学生充分的探索空间。
整个教学过程中,我设计灵活多样的教学方法。例:课件演示与实验相结合,个别实验和小组实验相结合,讲与练相结合,计算与测量相结合,谈话与板书相结合,讲与练相结合,计算与测量相结合。充分调动学生学习的主动性,给学生充分的探索时空,并且探究的题材对学生也具有一定的挑战性。学生的角色由知识的接受者转变为知识的构建者。
三、在研究性学习中培养学生合作意识和数学交流能力。
小组探索通过测、剪、量、算一系列操作认识圆的周长与直径有一定的倍数关系,巧用课件,概括出圆周长的计算公式。
附:教后感:
这次“三新一整合”的活动促使我重温《新教材标准》,改进自己教学观念,学习有关信息技术整合的新模式。本节课体现了我教学观念的一些改变。主要体现在:
一、把课堂的主动权交给了学生,给学生充分的探索时空。
课堂教学是“教”与“学”的统一,随着素质教育的不断深化,越来越偏重于“学”的研究(三新活动中的“新学法”)。教师不再是知识的提供者和传授者,而是数学学习的组织者、引导者、参与者;学生不再是知识的接受者,而是数学知识的建构者。师生角色的的变化,使学生在学习方式上有了质的飞跃。动手实践,自主探索、合作交流成为学生重要的学习方式。圆的周长计算方法的探索,这题材对学生有一定的挑战性,也就是和学生的现有认知状态有一个适度距离(潜在距离),学生在这种状态下的探究学习才是有意义的学习。本节课给予学生充分的时间探索出圆的周长总是直径的3倍多一些。
二、利用课件,激发探究兴趣、提高探究效率和培养探究能力。
课件动感的龟兔赛跑把全体学生引入课堂,理解了课题的含义、明确了学习的目的性,激发了探索的兴趣。课件的几次龟兔赛跑的介入,并逐级演示,再加上老师的启发引导和学生的观察思考有机结合,化抽象为具体,使学生进一步理解了圆周长的含义,明确学习目的性,激发了学生的探究兴趣。
运用课件设计自学内容,大大节省了板书所用的时间,使学生探究数学问题的效率得以提高。正方形周长和圆周长比较,大圆周长和几个内切小圆的周长和比较。通过课件的演示,对于引导学生说理,理解疑难问题,培养学生解决新问题的'探究能力有着极为重要的作用。
三、巧妙设计练习,照顾全体,培养学生的创造能力。
本节课的练习全部是要利用课堂所学的内容解决生活中的问题。特别是通过小组学习形式让学生利用圆周长的知识举出能解决生活中哪些有关圆周长的知识这一开放性题型。激发了学生的兴趣,也照顾了不同层面的学生。学生所举的例子充分体现了学生的创造性和运用知识的能力。
运用了探究式课堂教学。上课后,也有许多地方值得我进一步深思。例如怎样设问、问题开放到什么程度、信息技术怎样完美地和课堂整合、教学理念的进一步改变……
探究式课堂是否取得实效,归根到底是以学生是否参与、怎样参与、参与多少来决定的同时只有让学生主动参与教学,才能让课堂充满生机。
附:评析意见:
对于刘老师上的《圆的周长》一节课,我们可以用九个字来概括,“观念新,意识强,效果好”。从教学设计中和教学过程中,我们深切地感受到刘老师的教学理念很先进,对“新课程标准中的数学学习和数学教学”有深刻的认识,也体现出较好的效果。
一、教学观念上,刘老师的“个性教育意识”强
刘老师的“个性教育意识”强,可以从刘老师的课堂设计、课堂结构上都可以体现出来。课堂上学生的学习过程都是以小组的形式来开展的,学生之间通过协作、交流来共同实现学习目标。这种组织形式就能保证了每一个学生都能得到许多的学习机会,在这样的学习环境中,人人都能得到发展,不同的人得到了不同的发展。
二、教学关系上,刘老师的“学生的主体意识”强
刘老师的“学生的主体意识”强,这一点不仅可以从教师的角色的转变中可以看出来,还可以从教学时间的分配上得到体现。首先教师的角色在课堂上有很大的变化。教师不再一个人主导课堂,她把教学主阵地让位给学生,从而使学生真正成为学习的主体。在课堂上,老师是不仅一个引导者,通过“龟兔赛跑”的故事,配合课件动画的演示,一下子就把学生带到探究问题的学习环境之中来。老师还是一个组织者,给学生分工,给学生目标和任务,其余工作都让学生自己去完成。学生都很好地利用这些时间和空间,动手操作,通过操作去探究和发现圆的周长和直径的关系。老师不只是注重结论的学习,更是让学生去经历学习活动的全过程,从而使学生体验到探究问题的乐趣。老师更是一位与学生平等的合作者,老师适时的点拨与启发“正方形的周长与边长有关,大胆地让学生猜一猜圆的周长与什么有关”。再如,老师艺术地把自己的测量结果与学生平等地呈现在一起,没有一点强加给学生的味道。另外,为了真正体现以学生为主体,而不流于形式。刘老师给学生提供充分的学习时间和空间,如探究和发现圆的周长与直径的关系,学生用了12分钟。这就保证学生有充分的时间参与学习活动,尽可能地让全体学生参与学习活动,使学生人人动脑、动口、动手,从而真正确立学生学习的主体地位,还学生学习的主人地位。
三、教学模式上,刘老师的“创新意识”强
在教学活动中,刘老师很注重学生创造力的培养。其中练习的设计很有新意,对培养学生的创造力起着很大的作用。小组之间互相提出问题,或独立解答,或讨论交流。从学生提出的问题我们可以感觉到学生的创造力很强。如有的提钟的时针转一圈的长度、单车的车轮的周长、呼啦圈的周长等,还有地球的周长,大树干的周长等。这些问题都是我们生活当中所常见的现象。学生就可以利用今天所掌握的知识去解决这些问题。学生的收获真的很大。从而让学生体会到什么是有价值的数学,生活当中的数学就是有价值的数学,有趣的数学,有利于学生发展的数学就是有价值的数学。
四、建议
课件整合方面,为了让学生从更深层次上接触科学的真理,培养科学的态度和科学精神。可以在学生操作得到圆的周长是直径的3倍多一些的关系以后,设计一个较精确的计算圆周率的课件,让学生对圆周率有一个更加清楚的认识。
《圆的周长》教学设计13
新课标人教版六年级上册第62~64页。
【教学目标】
1、通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。
2、能利用圆的周长的计算公式解决一些简单的数学问题。
3、培养学生的观察、比较、分析、综合及动手操作能力。
4、通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。
难点:理解圆周率的意义。
【教具、学具】
课件、软尺、直尺、绳子、圆形。
【教学过程】
课前交流:请同学们唱一首歌。
(设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)
一、创设情景,生成问题
国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。
(设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。
(设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)
二、探索交流,解决问题。
师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。
师:同桌想一想圆的周长怎样测量?
师:把你的好方法在小组内交流一下。
(设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?
(设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。
师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。
师演示(线绕圆一周,然后量出线的长度。)
师:还有其他的方法吗?
生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。
师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。
生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。
师:这个办法也很妙!其他同学还有要补充的吗?
生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。
师:你的想法可真不简单!
师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。
师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?
生:能!
师:正方形的周长和什么有关?
生:周长是边长的4倍,师:那么圆的周长和什么有关系呢?
生:圆的直径越长圆越大,所以周长就越长。
师:那周长和直径有怎样的关系呢?
(设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)
师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。
师:现在大家通过填写表格发现了什么?
生:在测量中发现,大小不同的`圆的周长是不同的。
师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?
生:是由半径(或直径)唯一决定的。
师:圆的周长与直径或半径之间到底存在着怎样的关系?
生:每组算的结果不大一样,但都是3点多。
师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?
生:一样。
师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。
师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?
我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)
师:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
师:从表中我们可以看出圆的周长÷直径=圆周率
(板书:圆的周长=π×直径)。
如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。
生读:c=πd c=2πr
师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?
生:圆的直径或半径。
(设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)
三、回顾整理,反思提升。
这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?
(1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。
(2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。
教师《圆的周长》教学设计 篇3【教学内容】苏教版九年义务教育六年制小学数学第十一册”圆的周长”
【教学目的】
1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。
2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。
3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。
【教学重点】掌握圆周长的计算方法
【教学难点】理解圆周率的意义
【教具、学具准备】
教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。
学具:圆、直尺、小绳。
【教学过程】
1、导入新课。
(1)认识圆的周长。
教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?
(师出示正方形的图形。)
学生指着图形回答上述问题。
生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。
教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。
师:通过手摸正方形周长和圆的周长,你发现了什么?
生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。
老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?
老师一边显示图象一边讲述:
以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。
圆的周长展开后变成了一条线段。
(2)揭示课题。
师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。
(板书课题:圆的周长计算)
【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】
2、学习新知。
(1)学生动手实验,测量圆的周长。
全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。
(学生测量圆的周长,并板书测量的结果。)
师:你们是怎么测量出圆的周长的呢?
生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。
师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?
(老师边说边做手势,同学们笑了。)
生1:不能。
师:还有什么别的方法测量圆的周长吗?
生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。
教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。
教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?
生2:(不好意思地摇摇头)不能了。
师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?
【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】
(2)根据实验结果,探索规律。
教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。
师:这两个圆有什么不同?
生:两个圆的周长长短不同。
师:圆的周长由什么决定的呢?
生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。
师:请认真观察,(教师再演示)这条绳子是这个圆的什么?
生:是这个圆的半径。
师:半径和什么有关系?圆的周长又和什么有关系呢?
生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。
师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。
(学生测量圆的直径)
随着学生报数,教师板书:
圆的周长圆的直径
9厘米多一些3厘米
31厘米多一些 10厘米
47厘米多一些 15厘米
教师请同学们观察、计算、讨论圆的周长和直径的关系。
(学生讨论,教师行间指导、集中发言)
生1:我发现这个小圆的周长是它的直径的3倍。
师:整3倍吗?
生1:不,3倍多一些。
生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。
生3:我发现第三个圆的周长也是它的直径的3倍多一些
(板书:3倍多一些)
师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。
滚动法验证:
绳绕法验证:
投影显示验证:
直径:
周长:
师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?
投影出示祖冲之的画像并配乐朗诵。
“早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3.1415926---3.1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)
同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”
教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。
(板书:圆周率)
圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3.14。
师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?
(学生独立思考、讨论、看书)
板书公式:C =πd
C =2πr
【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】
3、反馈练习、加深理解。
请同学们把开始测量的三个圆的周长用公式准确计算出来。
(学生计算)
师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?
生:计算比测量要准确、方便、迅速。
(1)根据条件,求下面各圆的周长(单位:分米)
(学生计算,得出结果)
师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?
生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。
【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】
(2)判断正误。(出示反馈卡)
① 圆周长是它的直径的3.14倍()
② 圆周率就是圆周长除以它直径的商 ()
③ C =2π r =πd()
④ 圆周率与直径的长短无关 ()
⑤ π> 3.14()
⑥ 半圆的周长就是圆周长的一半()
一部分同学认为第⑥题是错误的。
教师举起了表示半圆的模型,(如图)
请判断失误的同学们亲自指一指半圆的周长。
在操作中,同学们恍然大悟,发现半圆的周长
比圆的周长的一半多了一条直径的长度。
(3)抢答。直接说出各题的结果。(单位:厘米)
① d =1 C =
② r =5 C =
③ C =6.28d =r =
(同学们争先恐后地报出自己算出的答案)
(4)运用新知识,解决实际问题。
教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。
同学们听了这个故事,摇摇头,表示不赞赏。
一位同学站了起来:“张伟锯古树该罚款了。”
教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”
教室里热闹起来,同学们七嘴八舌地议论着……
生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”
(同学们笑了,鼓起掌来,表示赞赏。)
(四)课堂小结:
师:这节课学习了什么?请打开书----看书。
教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”
师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。
(板书:变----不变)
师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。
画一个周长是12.56厘米的圆。怎样画?
【简评:这节课的设计体现以下几个特点:
1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。
2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。
3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。
4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。
5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】
《圆的周长》教学设计14
一、创设情境,导入新课
1、复习旧知(播放课件)
师:同学们,你们知道正方形的周长与什么有关吗?(边长)那正方形的周长等于什么?
2、揭示课题。
师:现在,老师给你们变个魔术。(演示课件圆)
师:有的同学反应可真快!什么是圆的周长呢?这也是我们这节课要研究的内容。(板书课题),谁能说一说什么叫圆的周长?有的同学已经举手了。
生:围成圆的这条线的长就叫做圆的周长,
师:这条线是什么形状的?
生:曲线
师:是曲线,那你能完整地说一遍吗?
生:围成圆的曲线的长叫圆的周长。(演示课件)
二、引导探索,探究新知
1、测量圆的周长的不同方法
师:老师这里有一个圆,那你们能告诉老师,“圆的周长指的是哪一部分的长”,同桌互相比画一下。
师:你们能量出圆的周长吗?(能)拿出你们的圆动手量一量,看看哪一组最会动脑筋,测量得又快又好。(学生小组活动)
师:老师看很多小组已经找到方法了,哪个小组愿意第一个到前面来把你们的方法告诉大家?(学生上台演示讲解)
师:这种方法还真不错!还有没有不同的方法?(再请一位学生上台)真善于动脑筋!为了大家看的更清楚些,老师把这两种方法重新演示一遍,(演示课件1:球在直尺上滚动一周,直接量出球的周长。演示课件2:线绕圆一周,然后量出线的长度)请同学们看屏幕:
师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出所有圆的周长呢?
生:能!
(播放课件)转动绑着绳子的小球形成一个圆:能用刚才的方法量出这个圆的周长吗?生:不能!
师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?
2、探讨圆的周长与直径的关系
师:同学们真有信心!我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?
师:你觉得是和直径有关系,说说理由好吗?
师:现在请同学们观察大屏幕,(课件)你发现了什么?
生:我发现圆的直径越长,它的周长就越长。
师:观察得真仔细!那到底圆的周长与直径有怎样的关系呢?要解决这个问题,还请同学们继续测量,测量前先听好活动要求。(学生小组活动——测量)
师:好,现在我们来交流一下你们的'实验结果。
(把学生的实验结果打在课件上)。
师:大家仔细观察分析,看能发现什么?
生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的比值都是三点一几。
师:这个同学真是好眼力。其他小组还有什么不同的发现吗?
生:所有圆的周长都是直径的3倍多一些。
师:看来大家的发现都一样,那我们再来看看这几个圆是不是也有这样的规律?(课件直观展示三倍多一点)看屏幕,注意仔细观察,看能发现什么?
生:圆不论大小,它的周长都是直径的三倍多一些.。
3、认识圆周率:
师:说得真好。圆不论大小,它的周长都是直径的三倍多一些.这是个固定不变的数,你们的这个发现和许多大数学家的发现是一样的,人们通常把圆的周长和直径的这个比值叫做圆周率,用字母π表示。(板书)
师:好,现在请同学们打开书63页,找出圆周率的概念,全班齐读。
师:圆的周长和它的直径的比值叫什么?用什么来表示?
师:老师收集了一些有关圆周率的资料,大家想看吗?看屏幕。(课件)
师:看了这些资料后,你了解到了什么?
师:我国古代人民真了不起!我相信:各位同学只要努力学习,将来一定会让我们中国成为世界上最强大的国家!
4、推导圆的周长的计算公式:
师:刚才我们用圆的周长除以直径求出了圆周率,那么谁能说一说到底怎样求圆的周长?能得出一个什么样的公式呢?
板书:C=πd
师:如果知道半径怎么求周长呢?
板书:C=2πr
师:这2个公式都可以来计算圆的周长,要求圆的周长必须知道什么条件?
生:圆的直径或半径。
5、现在我们就用我们推导出来的公式来解决问题,请看大屏幕。
三、初步运用,巩固新知
1、已知直径、半径求圆的周长
2、判断
3、已知周长求直径和半径
4、提问:小猴甩小球形成的圆的周长你会求吗?(课件)
四、小结
1、组织学生说说收获:
这节课你们学到了什么?
师:同学们从圆的周长、直径的变化中,看出了圆周率始终不变。如果我们长期坚持这样从变化中看出不变,你们就会变得越来越聪明。
《圆的周长》教学设计15
教具、学具准备:
多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。
教学过程:
一、 认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?
(生齐鼓掌!)
师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?
(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?
(板书课题:圆的周长)
(4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
二.测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)
(2)师:除此以外,还有别的方法吗?
方法二:把圆放在直尺上滚动一周。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
三、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?
(圆的周长与直径有关系。)
师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的`商,得数保留两位小数,并把数据填写在相应的表格中。
(生实际测量、计算、填表)
3.展示汇报
师:哪一个小组愿意来汇报你们的数据。
师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)
师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?
4.揭示规律
师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!
屏幕出示图3:
师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?
(圆的周长总是它直径的3倍多一些)
师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。
5.介绍小知识。
师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)
五、揭示圆的周长计算公式
师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?
(测量出它的直径)
师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)
师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)
(板书:C=πd)
师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?
(板书:C=2πr)
练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?
学生独立计算。汇报:唐老鸭跑的路程更远。
六、应用圆周长计算公式,解决简单的实际问题.
1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(课件出示)
(1)学生独立完成,汇报,弄清列式的依据。
(2)小结:已知直径求周长可直接套用公式。
2.通过媒体演示指导学生完成"做一做"作业。
饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?
小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.
五、总结,质疑,看书内化。
师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。
六、巩固练习。
1.判断。
(1)圆周率就是圆的周长和直径的比值。
(2)π=3.14。
(3)半径的长短决定圆周长的大小。
(4)同圆中,周长是直径的π倍。
2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?
3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?
4.求半圆的周长:d=6厘米(图略)
【《圆的周长》教学设计】相关文章:
《圆的周长》教学设计11-28
圆的周长教学设计08-30
《圆的周长》教学设计10-22
荐圆的周长教学设计10-05
圆的周长教学设计(推荐)09-05
【热】圆的周长教学设计01-04
圆的周长教学设计【优选】04-19
(荐)圆的周长教学设计05-19
[热门]圆的周长教学设计05-29
人教版圆的周长教学设计11-07
