(优)平行四边形的面积教学设计15篇
作为一名无私奉献的老师,通常会被要求编写教学设计,借助教学设计可以让教学工作更加有效地进行。一份好的教学设计是什么样子的呢?以下是小编为大家收集的平行四边形的面积教学设计,仅供参考,大家一起来看看吧。

平行四边形的面积教学设计1
教学目标
1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学
重难点
教学重点:理解并掌握平行四边形的面积公式
教学难点:理解平行四边形面积公式的推导过程
课前准备
多媒体课件
教学过程
师生活动
思考与调整
一、复习导入:
1、说出学过的平面图形。
2、在这些图形中,哪些图形的面积你会求?
二、探究新知:
1、教学例1:
(1)出示例1中的第1组图
要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
(2)出示例1中的第2组图
要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)
(3)揭示课题:
师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)
2、教学例2:
(1)出示一个平行四边形
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
第一种:①沿着平行四边形的高剪下左边的'直角三角形。
②把这个三角形向右平移。
③到斜边重合。
第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移。
③道斜边重合。
(4)教室用课件进行演示并小结。
师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。
师生活动
思考与调整
(5)小组讨论:
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的长与平行四边形的底有什么关系?
③长方形的宽与平行四边形的高有什么关系?
(6)学生总结,形成下面的板书:
长方形的面积=长X宽
平行四边形的面积=底X高
3、教学例3:
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。
转化后的长方形
平行四边形
长(cm)
宽(cm)
面积(cm)
底(cm)
高(cm)
面积(cm)
(2)学生操作,反馈交流。
(3)用字母表示面公式:S=ah(板书)
三、巩固练习:
1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。
2、指导完成练一练:强调底和高的对应关系。
四、总结:
师:通过今天的学习有哪些收获?
板书设计:平行四边形面积的计算
转化
已学过的图形新图形
割补、剪拼
因为长方形的面积=长×宽
所以平行四边形的面积=底×高
平行四边形的面积教学设计2
教学目标:
1. 探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。
2. 让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。
教学重点:探究平行四边形的面积计算公式。
教学难点:充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。
教学具准备:平行四边形纸片、尺子、剪刀、课件
教学过程
一、谈话,揭题:
1、谈话:听过曹冲称象的'故事吗?曹冲真的称大象吗?
2、揭题:平行四边形的面积。
二、探究新知:
问题(一)要求这个( )的面积,你认为必须知道哪些条件?
1、 同桌交流
2、 反馈:①长边×短边=10×7=70平方厘米
②底×高=10×6=60平方厘米
3、 引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?
4、 学生动手验证(小组合作)
5、 请小组代表说明验证过程
问题(二)为什么要沿着高将平行四边形剪开?
问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?
问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?
1、 引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?
2、 推导公式:平行四边形的面积=底×高
3、 小结
问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?
1、动态演示: ,引导发现周长不变,面积变大了。
2、动态演示: ,发现面积变小了
。
3、要求平行四边形的面积,现在你认为必须知道哪些条件?
问题(六)是不是所有平行四边形的面积都等于底×高呢?
让学生拿出各自的平行四边形,动手剪拼,看看行不行。
三、应用新知
1. 左图平行四边形的面积=?
2.解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?
四、总结:
1.回想一下今天我们是怎样学习平行四边形的面积?
2.你还想学习哪些知识呢?
平行四边形的面积教学设计3
教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重、难点:探索并掌握平行四边形的面积计算公式及推导过程。
教具学具:课件、平行四边形卡片、剪刀、三角板、直尺等。
教学模式:“我能行”四步教学法。(详见文后注)
教学流程:
课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?
预设:老师的年龄是多少?教几年级?
师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?
生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。
师:想得真好,许老师就是(30)岁。
师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。
一、情境导入,确定目标
师:1.在数学课堂上哪些地方用到了“转化”?
预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。
看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。
2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?
生:演示方法。
3.师:为什么把它拼成一个长方形呢?
预设:学过长方形面积的计算,而且能够拼成长方形。
这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。
4.刚才的图形“转化”过程,什么变了,什么没变?
5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。
(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。
(2)我会用平行四边形面积公式解决实际问题。
【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。
二、互动展示,生成问题
师:1.你猜一猜平行四边形的面积会与什么有关?
预设:长方形、正方形、底、高、夹角、相邻的边等。
2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。
3.请带着问题自学。(课件)
4.四人小组交流一下你是怎样“转化”平行四边形面积的。
【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。
三、启发思路,引导归纳
师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?
2.平行四边形的面积怎么算?
3.板书:平行四边形的'面积=底×高
4.你是怎样推导的?说一下你的操作过程。
5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)
6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)
7.这个平行四边形与剪拼的长方形之间有什么关系?
预设:平行四边形的面积与长方形的面积相等(板书)
8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?
9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)
【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。
四、练习检测,拓展链接
1.练习检测卡一题。
2.课件:判断、选择题、口答列式。
3.练习检测卡二、三题。
4.谈谈你对这节课的收获,好吗?
拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。
【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。
板书设计:
(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)
平行四边形的面积教学设计4
教学基本
内容苏教版小学数学五年级(上册)第12—14页例1、例2、例3,试一试,练一练及练习二。
教学目的和要求
1、使学生经历平行四边形面积计算公式的推导过程,能正确地运用公式进行计算。
2、引导学生操作、观察、比较,发展学生的空间观念,使学生初步知道转化的数学思想方法。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点及难点
正确地运用公式进行计算
教学方法及手段
引导学生操作、观察、比较,使学生经历平行四边形面积计算公式的推导过程,能正确地运用公式进行计算。
学法指导
观察,归纳,集体备课个性化修改
预习
1、谈话:同学们,你们认识哪些平面图形?
2、在这些图形中,你会求哪些图形的面积?
教学环节设计
1、教学例1:
(1)出示例1中的第1组图
提问:下面的两个图形面积是否相等?
在小组里说一说你准备怎样比较这两个图形的面积。
(2)出示例1中的第2组图要求:不用刚才的方法还能比较这两个图形的大小吗?
(3)揭示课题:今天我们运用已学过的知识来研究新图形的面积计算公式。板书“平行四边形面积的计算”。
2、教学例2:
(1)出示一个平行四边形
你能想办法把这个平行四边形转化成学过的.图形吗?
第一种:
①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移,到斜边重合。
第二种:
①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移,到斜边重合。
(2)用课件演示转化过程并小结。
沿着平行四边形的任意一条高剪开,通过平移,可以把平行四边形转化成一个长方形。
(3)组织小组讨论:
a转化后长方形的面积与原来平行四边形面积相等吗?
b长方形的长与平行四边形的底有什么关系?
c长方形的宽与平行四边形的高有什么关系?(4)板书:
长方形的面积=长×宽
平行四边形的面积=底×高
3、教学例3:
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第127页上任选一个平行四边形剪下来,试一试。
转化成的长方形平行四边形
长宽面积底高面积
(2)用字母表示面积公式:S=ah(板书)
4、完成试一试,教师评议:明确求平行四边形的面积要有两个条件,底和高。
作业
1、完成练一练:强调底和高的对应关系。
2、完成练习二的第1题。
3、完成练习二的第5题。引导学生操作,得到结论。
平行四边形的面积教学设计5
教学内容:
人教版小学《数学》五年级上册,平行四边形的面积。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:探索并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形的面积计算公式的推导过程。
教学过程:
一、巧设情境,铺垫导入
师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?
(根据学生的回答,教师适时板书:长方形的面积=长×宽)
师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)
师:这样一拉,形状变了,面积变了吗?
师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?
(平行四边形的面积等于相邻两条边的乘积)
师:究竟这个猜想是否正确,下面我们一起来验证一下就知道了。
请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确 .拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积.
师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)
二、合作探索,迁移创造
1、图形转换
师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)
师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)
2、探讨联系
师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)
师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的'面积可以怎样计算呢?(平行四边形的面积等于底乘高)
(教师根据学生回答板书:平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)
(教师根据学生回答板书:S=ah)
4、验证公式
师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)
师:计算出来的结果和我们数方格得出的结果一样吗?(一样)
师:这证明我们所推导出来的平行四边形面积公式是正确的。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)
三、层层递进,拓展深化
1、算一算
师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
2、选一选
师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
3、画一画
师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)
4、想一想
师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)
师:你发现了什么规律?(引导学生理解等底等高的平行四边形
面积相等。)
四、总结全课,提高认识
回顾刚才我们的学习过程,你有什么收获?
教学反思:
本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。
1、前后呼应,浑然一体
利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。
把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。
2、合作探索,迁移创造
在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。
平行四边形的面积教学设计6
一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课
猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的.菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的面积=长×宽
师:平行四边形的面积怎么算呢?
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)
齐读学习目标:
1、通过操作,能推导出平行四边形的面积计算公式。
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)
小组讨论:(1)仔细观察、比较表格中的数据,你发现了
(2)猜想:平行四边形的面积=_________________________
三、动手操作,验证猜想
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)
B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(6)交流汇报
板书:长方形的面积=长×宽
↓ ↓ ↓
平行四边形的面积=底×高
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)
四、当堂检测
1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()
A:8×3B:8×6C:4×6D:4×3
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1.4cm
2.5cm
通过做此题,你发现了什么?
六、课堂小结
说说本节课,你收获了什么?
七、板书设计:
平行四边形的面积
长方形的面积=长×宽
↓ ↓ ↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
平行四边形的面积教学设计7
教学内容:
五年级上册第79—81页。
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:
动手操作、小组讨论、演示等
教学准备:
每个学生一把剪刀,一个平行四边形
教学过程:
一、导入:
1、出示课本P79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长X宽
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
二、探索新知
1、用数方格的方法验证:
我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的`都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?
2、猜测:
谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?
3、探究平行四边形面积公式
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底X高)(字母式)
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
4、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
三、巩固练习
四、提高练习
五、总结
反思:
在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
平行四边形的面积教学设计8
【教学目标】
1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,理解和掌握平行四边形的面积计算公式,能正确求平行四边形的面积。
2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较活动,初步认识和使用转化的方法,发展学生的空间观念。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。
【教学重点、难点】
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
关键点:通过引导学生提出假设——动手操作——推导——概括的步骤开展探究活动,利用知识迁移及剪、移、拼的实际操作来分解教学难点即平行四边形面积公式的推导。关键是通过“剪、移、拼”将平行四边形转化成长方形后,找出平行四边形底和高与长方形长和宽的关系,及面积不变的特点,从而理解平行四边形面积的推导过程。
【教具、学具准备】
多媒体课件,平行四边形纸片三个、直尺(三角尺)、剪刀、平行四边形图片一个。
【教学过程】
一、创设情境,抽取方法、导入新课
1、师: 同学们,从今天开始,我们来研究有关图形面积的知识。我们已经学过了哪些图形面积的计算方法?怎么计算?(学生回忆、回答)
师:老师今天带来了两个图形,但是并不是规则图形,谁能帮老师看看哪个图形的面积大?看谁能最快解决。
学生思考、回答:
(1)数格子的方法。
(2)把第一个图右边的小正方形剪下移到左边空格处,第二个图上面凸出的小正方形剪下移到下面的空格处,拼成长方形,两个长方形完全相同,所以面积一样大。
动画演示割补的过程。
师:这个方法巧妙吗?通过割补,把两个不规则的图形转化成了我们学过的`长方形,从而可以快捷顺利地计算它们的面积——这种方法在数学上叫做“割补——转化”法。 “转化”是数学上的一种非常重要的思想,是解决图形问题的一个法宝,它能帮助我们解决好多的数学问题呢,你们喜欢这种方法吗?
既然大家都喜欢这种方法,那么我们今天就利用这个方法来研究一个新图形的面积,看哪个小组最快研究出来。
二、应用方法,动手操作,探究新知
1、预设问题:
师:我们来看下面的问题:
实验小学有一个花坛,想要计算出它的面积,怎么计算呢?
师:首先来看一看,花坛是个什么图形?(平行四边形),抽取图形:
怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。
2、探究公式:
(1) 出示问题:
师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。
友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:
① 平行四边形可以转化成学过的哪种图形?
② 平行四边形的底和高分别与转化后的图形有什么关系?
③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?
(学生在独立思考的基础上进行合作探究)
(2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?
(3) 小组探究。
(4) 组间展示交流:
师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)
师:谁还有不同的剪法?
动画展示割补——转化的过程:
怎么就能计算出它的面积呢?为了研究这个问题,我们准备了一些学具,每个小组的组长先清点一下够不够。有三个平行四边形纸片、直尺(三角尺)、剪刀。
2、探究公式:
(1) 出示问题:
师:为了研究顺利进行,老师给大家几个提示,看看哪个小组能最快研究出结果(师读提示)。
友情提示:充分运用我们准备的学具,通过剪一剪、拼一拼、补一补的方法,试一试:
① 平行四边形可以转化成学过的哪种图形?
② 平行四边形的底和高分别与转化后的图形有什么关系?
③ 怎样通过转化后的图形推导出平行四边形的面积计算方法呢?
(学生在独立思考的基础上进行合作探究)
(2) 现在利用我们的学具,小组合作,看看能不能想办法把平行四边形转化成我们学过的图形来计算面积?
(3) 小组探究。
(4) 组间展示交流:
师:哪个小组上来展示一下你们的研究成果?(小组演示、说明。演示过程中提示:你们是沿哪一条线箭的?)
师:谁还有不同的剪法?
动画展示割补——转化的过程:
(其中第三种方法学生一般想不到,教师可以展示提出,简单说明,以开阔学生的思路。)
(4)师生交流提炼,形成板书:
师生总结:不管利用哪种割补方法,我们都能把平行四边形转化为什么图形?(长方形),并且同学们都已经看出:这个长方形的长就等于平行四边形的底,长方形的宽就等于平行四边形的高。根据长方形面积的计算方法,我们就可以得出平行四边形面积的计算方法:
师:计算平行四边形面积,必须知道什么?(底和高,缺一不可。)
3、教学例1:
师:有了这个成果,我们会解决前面的问题了吗?
出示例1:下图平行四边形花坛的面积是多少?
学生回答,教师板书:S=ah=6×4=24(cm2)
3、巩固小结:
通过这节课的研究,我们发现平行四边形可以用割补的方法转化为长方形,并且我们通过长方形面积公式推导出了平行四边形面积公式:平行四边形的面积=底×高(S=ah)。大家都学会了吗?下面我们就来比一比,看谁学的最熟练。
三、分层训练,巩固内化
1、求下面的平行四边形的面积,只列式不计算:
(第三个图形计算中提问:用12×9.6行不行?强调底与高的对应)
2、慧眼识对错:
(1) 一个平行四边形的底是20厘米,高是1分米,它的面积是20平方厘米。( )
(2) 平行四边形的底越长,面积就越大。( )
(3) 下面平行四边形的面积是:8×5=40(平方厘米)( )
,人教新课标五上《平行四边形的面积》教案2
(4) 一个平行四边形的面积是36cm2,底是9cm,那么它的高是4cm。( )
3、老师最近买了一辆新车,想买一个停车位,选中了一个平行四边形的,如图:
师:我为了预算需要准备多少钱,需要先知道它的面积有多大,同学们能不能帮助老师解决这个问题?先说说你会怎样做?(先测量底和高,再利用公式计算)(提示:测量结果保留整数)
我把这个图形按比例缩小了,画在了我们面前的纸片上(出示纸片),你们亲自测量一下,帮我把面积算出来好吗?(底6cm,高3cm)
学生测量、计算、展示。
师:谢谢你们帮我算出了停车位的面积,只要把单位改成平方米,就是我的停车位的实际面积了。
4、为了方便行人,某小区需要在一片绿化带中修一条平行四边形小路,路宽1.5m,同学们为小区提供了如图所示三种方案,哪种方案破坏草坪最少?你想到了什么?
四、课堂小结:
师:这节课你有什么有收获?
师:今天,我们研究出了一种非常巧妙的求图形面积的方法:割补——转化法,就是把不规则的图形通过割补的方法转化为我们熟悉的规则图形来求面积,同学们都研究得非常认真,对这种方法运用的也很好,在以后的学习中我们会常用到这种方法,希望同学在以后的学习中也多动脑筋。
平行四边形的面积教学设计9
1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。
探索并掌握平行四边形的面积计算方法。
理解平行四边形面积计算公式的推导过程。
电子白板课件、平行四边形模型、剪刀、初步探究学习卡
一、课前引入、渗透转化。
1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2、播放制作七巧板的视频。
3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1、电子白板导出两个花坛,比一比,哪个大?
2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1、利用数方格,初步探究
2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1、探索把一个平行四边形转化成已学习过的`图形。
2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3、平行四边形的面积=底×高
4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1、课件出示例1
2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
平行四边形的面积教学设计10
教学内容:
人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。
教学目标:
①理解并掌握平行四边形的面积计算公式。
②会运用公式正确计算平行四边形的面积。
③培养操作能力和推理能力,养成积极思考的良好学习习惯。
教学重点:
理解并掌握平行四边形的面积计算公式。
教学难点:
平行四边形的面积计算公式的推导。
教具和学具:
电脑、课件、平行四边形、长方形、剪刀、尺。
教学过程:
一、前提测评。
1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?
3、指出平行四边形对边上的高。
二、认定目标。
1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]
2、看到这个课题,大家想学习哪些知识呢?
三、导学达标。
(一)、用数方格的方法求平行四边形的面积。
(1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)
⑵引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?
(3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?
(二)、推导平行四边形的面积计算公式。
⑴、学生实验操作。
谈话:请拿出你的平行四边形, 想办法把平行四边形剪、拼成长方形。
在剪、拼前,大家想一想长方形的特征是怎样的?
a、学生实验操作。
b、问:你是怎样把平行四边形剪、拼成长方形的?
c、电脑显示剪拼过程。
⑵、讨论拼成的长方形与原平行四边形的关系。
a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?
①平行四边形与拼成的长方形的面积有什么关系?
②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?
③长方形的面积公式怎样表示?
④平行四边形的面积公式怎样表示?
b、谈话:请看屏幕, 根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)
c、板书:
长方形的.面积=长×宽
‖ ‖ ‖
平行四边形的面积=底×高
d、齐读两遍公式
(三)实际运用。
1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?
2、学生运用公式计算方格图中的平行四边形的面积。
⑴、学生计算。[板书:6×3=18(平方厘米)]
⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。
3、强调运用公式计算平行四边形面积的条件。
师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?
4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。
⑴、出示例题,学生默读一遍:
一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)
⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?
(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?
⑶、学生列式计算,一生板演。
⑷、评讲。
(五)、实际应用训练。
①课本p72.2
②p73.5
四、教师总结:你有什么收获?
五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?
看谁算得最快?
六、作业:72页
评议记录:
本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。
本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。
平行四边形的面积教学设计11
教学内容:苏教版第八册第42页“平行四边形面积的计算”
教学目标:
1、发现平行四边形面积的计算方法。
2、能类推出平行四边形面积的计算公式。
3、能准确进行平行四边形面积的计算。
4、培养学生的动手操作、观察、分析、类推能力。
5、渗透转化思想,培养学生的空间观念。
教学重点:掌握平行四边形面积的计算公式,准确计算平行四边形面积。
教学难点:平行四边形面积公式的推导过程。
教学具准备:自剪平行四边形,作业纸,课件。
教学过程:
一、复习铺垫:
1、看老师给你们带来了这样三个图形(屏幕出示书42页图),这里的每个小方格都表示1平方厘米。第一个是什么图形?(学生一起答),它的面积是多少呢?你是怎么样知道的?(指名回答)还有什么方法能很快求出它的面积呢?(指名回答)
2、再看第二个图形,面积是多少呢?你是怎样知道的?第三个呢?
3、师小结:像这两个图形我们可以通过剪、移、拼转化成长方形用长乘宽就能很快求出它们的面积了(同时板书划线部分)
二、引导探索、揭示新知:
1、出示第42页上的图形。师:再看,这是个什么图形?(同时屏幕出示平行四边形)仔细观察它的底是多少?高是多少?(指名回答)
有谁知道它的面积是多少?你怎么知道的?
那不数方格,能不能也象计算长方形的面积那样,用一个公式来计算平行四边形的面积呢?
这节课我们就要通过做实验来发现计算平行四边形面积的好方法。(同时师板书:平行四边形面积的计算)
2、实验操作
(1)提问:大家想,平行四边形可转化成什么图形来推导它的面积公式?(转化成长方形)
(2)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出1号平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!
(3)拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(投影仪上展示)
(4)为什么要沿高剪开呢?(因为长方形的四个角都是直角)
3、演示:下面老师演示转化的过程,请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。请看屏幕。
第一步画:从平行四边形一个钝角的顶点向对边作高。
第二步剪:沿高把平行边形剪成两部分。
第三步移:把左边的直角三角形平行移动到右面边。也可以这样:沿平行四边形中间的任意一条高把平行四边形剪成两部分,把左边的直角梯形平行移动到右边。请大家把剪掉的部分还原,再平移一次。
4、公式推导
(1)现在大家已经学会通过画、剪、移的方法可以把平行四边形转化成长方形了,下面请同学们把你自己剪的两个同样大下小的平行四边形,在你已经知道它们底和高的情况下,把其中一个平行四边形转化成长方形后填表,然后在小组交流,你发现这个长方形与原来的平行四边形有什么关系?
根据回答板书:
长方形的面积长宽
平行四边形的面积底高
(2)你的长方形面积怎样计算?那么你原来的平行四边形面积可以怎样计算?指名完成板书
同学们真不简单,终于自己动手找到了平行四边形的面积公式,大家把公式齐读一遍。
请同学们回忆一下刚才的实验过程,想一想:这个公式是怎样推导出来的?(先…发现…因为…所以)指名说说推导过程。
师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的'面积与平行四边形的面积相等。
5、教学字母公式
如果平行四边形的面积用字母s表示,底用a,高用h表示,那么平行四边形面积的计算公式可以写成:
s=a×h再含有字母的算式里,字母和字母中间的乘号可以记作“.”或省略不写,所以这个公式还能写成:s=a.h或s=ah齐读一遍
三、应用公式、尝试例题
1、出示例题:一块平行四边形玻璃,底是5分米,高是7分米,它的面积是多少平方分米?
问:题目中要求的是什么形状物体的面积?告诉了什么条件?请试着做一做
(1)指名板演(其余学生做在课堂练习本上)
(2)集体评讲
2、小结:到此为止,求平行四边形的面积,一共学了两种方法,第一种数方格求面积,第二种应用公式计算,哪一种方法更简便?
四、巩固练习
同学们拿出你的平行四边形,根据你的数据,通过今天学习的知识来考考大家。(?~3名)
五、全课总结
通过这堂课的学习你有什么收获?
师:为了推导平行四边形的面积公式,我们首先把平行四边形转化成长方形,通过操作实验发现,这个长方形的面积与原来的平行四边形的面积相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等,从而推导平行四边形的面积公式。这种转化的思想在今后的学习中还会经常用到,希望同学们能很好掌握。
六、学到这儿,你有没有这方面知识的思考题来让大家动动脑?
机动思考题:
1、一个平行四边形的面积是12平方厘米,请你算一算它的底和高各是多少?
2、选择条件,用两种方法算出平行四边形的面积,看看是否相等?
平行四边形的面积教学设计12
教学内容:
义务教育课程标准实验教科书数学人教版五年级上册《平行四边形面积》
教学目标:
1.使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2.通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3.培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:平行四边形面积公式的推导过程。
教具准备:课件、方格纸、剪刀、长方形、纸质平行四边形、透明平行四边形。
教学过程;
一、情景引入,激趣导课
1.情景引入(出示课件)
师:同学们大家好,今天我们一起继续研究图形面积计算,请看主题图。看情景图有哪些图形?
生:长方形、正方形、平行四边形、三角形、梯形。
2.从平行四边形的花坛中引出“平行四边形的面积”。
师:请同学们看这幅图的下方有两个花坛,你认为这两个花坛哪一个大?
师:到底是哪个大,我们该怎么办?
生:算它们的面积。
3.板书:平行四边形的面积
【设计意图】
A、指导学生有序的读图,从整体(你发现在哪儿有哪些图形?)到局部(两个花坛)。
B、“这两个花坛哪一个大?”带着问题引入探究,突出课题并激发学生探究的欲望和研究的兴趣。
二、动手操作,探究新知
1.猜测、试算、验证。
师:既然大家已经会算长方形的面积了,你们敢不敢试着算一算平行四边行的面积。
学生动手测量、试算按比例缩小的平行四边形图形的面积,老师观察出现的情况。
汇报并板演出现的各种情况。(生成有三种情况)
生1:6×5.5=33(平方厘米)
生2:6×4=24(平方厘米)
生3:(6+5.5)×2=23(平方厘米)
说理:
生1:相邻两边的积等于平行四边形的面积。
生2:底和高,底乘高等于平行四边形的面积。
生3:两条邻边的和乘2就是平行四边形的面积。
【设计意图】
从贴近学生的生活中的平行四边形花坛,抽象出来的图形,学生动手测量并试着算一算。从试做中发现问题、提出问题、为解决问题做好铺垫。
2.归纳意见,提出验证。
(1)归纳意见
师:你们对以上三种方法有什么意见或补充?
生1:我认为第三种是错的,这样计算出来的表示平行四边行的周长而不是面积。
师:你们对其它两种有什么看法:
生:我认为第二种是正确的,我的理由是:长方形的面积是长乘宽,所以平行四边的面积就是底边乘它的邻边。
师:有同意她想法的吗?说说看……。
师:现在有两种意见,怎么办?
生:验证。
师:怎么验证?
(2)数方格法验证猜想。
师:推导长、正方形面积时,我们就是用数方格的方法。
师:平行四边形不同于长方形,想一想怎么数好数。(题目中不出示“不满一格按半格计算要求”)
学生用方格纸测量平行四边形的面积
生1:我是把所有不满一格的都按半格算,这样数的。
生2:我是把这些半格移到另一边半格上就组成整格了,这样好数。
生3:我是沿着格子的竖线把平行四边行剪下来,平移到另一边,这样组成了一个长方形,这样很好数了。
师:同学们的方法真多,这些方法都能很好的解决了这个问题。
师:根据数格得出的结论,你认为哪种结果是错误的。
生:我们通过数方格法得知,用一条边乘它的邻边的方法是错误的。
【设计意图】
A:让学生归纳意见的同时对问题进行深入的分析,并能寻求解决问题的策略。
B:通过数方格验证哪种方法是正确的,并且围绕“怎么数好数”让学生了解、体会方法优化的思想及为接下来的剪拼法做好铺垫。
3.提出疑问,验证猜想、得出结论。
(1)提出疑问。
师:你们同意她的想法吗?齐:同意。
师:那么正确的方法是……
生齐说:底乘高。
(2)剪拼法,科学验证猜想。
师:底乘高来计算平行四边形的面积与数方格得出的结论是一样的,那么用底乘高的方法计算平行四边形的面积是对还是错,需要……
生齐说:验证。
师:怎么验证更合理,更科学?
学生提问:能不能转化成长方形?
师:请同学们想一想,怎么做才能把平行四边行转化成长方形?
师:请同桌合作,并动手用学具剪一剪,拼一拼。
小组合作,动手操作。
(3)演示操作,寻求不同,强化过程。
演示学生操作过程
师:同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。
(4)合作讨论,得出结论
师:小组讨论拼出的长方形和原来的平行四边形相比,你发现了什么?以下面的讨论题进行思考交流。
①拼出的长方形和原来的平行四边形比,什么变了,什么没变?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?
学生汇报:
生1:形状变了,面积大小没变。
生2:转化后的长方形与原来的平行四边形对比,发现,长方形的长等于平行四边形的底,宽等于平行四形的'高,面积没有变化,得出,平行四边形的面积等于底乘高。
老师根据学生的表述板书:
长方形的面积=长×宽
平行四边形的面积=底×高
师:我们通过猜想,数方格验证,产生疑问,转化法验证,从而明白学生的猜想(底乘高等于平行四边形的面积)这个结论是正确的,在今后的学习中我们经常用到“猜想”“转化”“验证”等方法进行探究。
【设计意图】
A:数方格法已确定底乘它的邻边计算平行四边形面积是错误的。教师设疑让学生体会猜想的结论不一定是正确的,激励学生还需要进行一步经历和探究更科学的推理平行四边形面积计算公式的方法。
B:在数格时渗透剪拼的思想,在这里学生想到剪拼法并不难,在同学的相互帮助下能够顺利的完成任务。
C:由学生上讲台演示沿着中间的高剪开,拼成长方形既是强化剪拼法的过程,也是要寻求不同方法。
D:小组合作,观察对比,得出结论。培养学生小组合组和小结、概括能力。
4.用字母表示公式。
师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面积可以用字母什么表示?字母中间乘号可以省略。S=ah
师:要求平行四边形的面积,必须知道什么?
生:底和高。
三、利用公式,独立完成,解决问题。
1.独立完成,情景图中,两个花坛哪一个大?
生:长方形面积生:平行四边形面积
S=abS=ah
=6×4 =6×4
=24(m2)=24(m2)
答:两个花坛一样大。
2、利用公式解决例1。
例1:一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
两人板演,其余做在练习本上。S=ah=6×4=24(m2), 6×4=24(m2)
【设计意图】
应用公式解决课前留存的问题及生活中的问题。把数学还原回生活中去。
四、反馈练习,发展思维。
1.解决生活中的问题
一个平行四边形的停车位底长5m,高是2.5m,它的面积是多少?
2.在方格纸上画一个底是4厘米,高是3厘米的平行四边形,它们的面积是多少?
【设计意图】
A、让学生明确认识到等底等高的平行四边形它们的面积一定相等。
B、让学生体会面积相等的平行四边形不一定是等底等高。
3.拓展延伸
要求下图的面积需要知到哪两个条件?你能把这个平行四边形分成两个面积相等的三角形吗?并求一个三角形的面积是多少:
【设计意图】
学生通过把这个平行四边形分成两个面积相等的三角形,推算一个三角形的面积是多少,让学生能在这道题的影响下,学生对知识和数学思想都有一个延伸。
五、课堂总结
今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?给你有什么启示?
板书设计:
平行四边形的面积
平行四边形的面积教学设计13
教学目标:
1、经历平行四边形面积公式的推导过程,体验成功的快乐,形成数学的经验、
2、知道平行四边形的面积公式、
3、会求平行四边形的面积、
4、利用教师的情感特征调动学生学习的积极性和主动性、
教学重点:
1、平行四边形面积公式的推导过程、
2、应用平行四边形的面积公式进行计算、
教学难点:
平行四边形面积公式的推导过程、
教学关键:
转化前后平行四边形与长方形面积及各部分间的对应关系、
教学过程:
一、启动导入:
1、电脑出示长方形图形:
指出:图中一个方格代表1平方厘米,请你求出方格中长方形的面积、
指生口答
问:你是怎么做的?
②出示:
这还是长方形吗?你能求出它的面积吗?(生:18平方厘米、)
生小组内先交流一下,指生反馈
得出两种方法:(1)数格子法 (2)将它转化成一个长方形,再求出它的面积。师重点评讲第二种方法。
③出示: 这个图形,你会求它的面积吗?(生可能说:我把右面的正方形切割下来,移到左右,就变成了一个长方形、再根据长方形的面积公式长×宽就可以求出这个图形的面积、(电脑课件演示转化过程)、
2、刚才, 这两个图在求面积时有什么共同的地方?(都是把不规则图形转化成长方形,求出了它的面积)
把不规则图形转化成规则图形,把没学过面积计算的图形变成学过面积计算图形的过程,就叫做转化。
刚才,在转化的过程中,谁在变,谁不变?(形状在变,面积不变。)
3、(出示一个平行四边形)引入:这个平行四边形的面积你会求吗?今天我们就来研究平行四边形的面积。(板书课题)
二、主动探索:
1、引导探索:不规则的图形可以转化成长方形来求出它的面积。平行四边形能不能也用转化的思想求出它的面积呢?请大家以小组为单位合作转化,转化后讨论。
电脑出示:⑴请同学们拿出自已准备的平行四边形纸片,以四人小组为单位,想法转化成学过面积计算的图形求出平行四边形的面积、
转化后思考:
①转化成怎样的图形?你是如何转化的?(如何画线)
②通过转化你发现了什么?
③说明了什么?学生分四人小组讨论,教师点拨、
学生汇报。
学生可能出现的'情况:
问:你是怎么剪开的?是随便剪的吗?(是沿高剪的)
生:我们把平行四边形沿高剪开,变成了长方形。转化的过程中,长方形的面积既没有增加,也没有减少,长方形的面积与平行四边形的面积相等。说明求出了长方形的面积,也就求出了平行四边形的面积。
小结:尽快我们采用了不同的方法,都是把平行四边形转化为长方形。并且知道转化前后面积的大小没有变化。下面以四人小组为单位仔细观察转化前后平行四边形与平行四边形各部分间的对应关系,讨论推导出平行四边形的面积计算公式。
2、推导公式:
(1)请同学们对照转化前后两个图形各个部分之间的对应关系,以四人小组为单位,小组合作推导出平行四边形的面积计算公式、
四人小组讨论推导平行四边形的面积,教师点拨。
学生汇报:长方形是由平行四边形的面积转化而来的。转化前后面积的大小没有变化,所以长方形的面积等于平行四边形的面积,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。长方形的面积是长×宽,所以,平行四边形的面积=底×高。
(2)电脑课件演示平行四边形转化为长方形的过程。结合图重点讲解平行四边形面积公式的推导。
平行四边形的面积教学设计14
教学目标:
1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。
2、能应用平行四边形的面积计算公式解决实际问题。
3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。
教学重点:
平行四边形的面积计算公式的推导与应用教学难点:
理解和掌握用割补法推推导平行四边形的面积计算公式
教具准备:
平行四边形纸、长方形纸、多媒体学具准备:
平行四边形纸、剪刀、尺子教学过程:
一、创设情景,引出课题
1、创设情景
同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)
2、引出课题
提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的`花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。
二、新课
1、自学,用数方格的方法计算平行四边形的面积。
(1)多媒体出示P80图和表格
(2)读一读数方格时要注意的地方
(一个方格代表1平方米,不满一格都按半格计算)
(3)让学生在电脑上填写表格
(4)提问:观察表格的数据,你发现了什么?
(5)学生汇报。
(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。
2、推导平行四边形的面积计算公式
(1)猜想
如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。
(2)验证
a、动手操作
剪——平移——拼,把一个平行四边形变成一个长方形。
b、讨论:
1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?
2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?
平行四边形的面积教学设计15
教学内容:
人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》p86-88
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪刀
教学过程:
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)
一、情境创设,揭示课题
1、创设故事情境
同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自己的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?
2、复习旧知,揭示课题
(1)、复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)
(2)、师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
(板书课题:平行四边形的面积)
二、自主探究,操作交流
1、大胆猜想
师:在学习推导长方形的`面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
(两个图形的面积相等,都是18平方米……) (知识点)
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
(师出示一个平行四边形纸板,生看图猜测。)
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.
(师参与到小组活动中,巡视指导。)
3、汇报交流
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(电脑显示思考题)
小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:长方形面积=长×宽
平行四边形面积=底×高 (知识点)(能力点)
5、回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)
7、记忆公式
闭上眼睛记记公式。
如果要求平行四边形的面积,必需要知道哪些条件呢?
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?
(出示喜羊羊的草地图)(说明格式要求)学生独立完成。
三、深化运用,加深理解
通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”
1、算出下列平行四边形的面积 (考查点)
课件出示图形
(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)
2、选一选。(题目见课件) (考查点、能力点)
(强调:平行四边形的面积=底×底边对应的高)
你有什么结论?(等底等高的两个平行四边形面积相等。)
3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)
(考查点、能力点)
有一块地近似平行四边形,底是15米,高 是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?
四、解决问题,应用拓展
1、小小设计师:
羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?
2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?
五、总结全课,提高认识
这节课我们学习了什么知识?是怎么来学会这些知识的?
【平行四边形的面积教学设计】相关文章:
平行四边形的面积的教学设计11-20
平行四边形的面积教学设计10-04
《平行四边形的面积》教学设计05-20
平行四边形的面积教学设计10-31
面积教学设计07-10
平行四边形面积教学设计优秀12-19
平行四边形的面积的教学设计【实用】11-20
平行四边形的面积的教学设计(通用)11-20
《平行四边形的面积》教学设计(热门)05-20
《平行四边形的面积》教学设计优秀07-26
