圆柱的表面积教学设计(优选15篇)
作为一名辛苦耕耘的教育工作者,就有可能用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。我们应该怎么写教学设计呢?以下是小编为大家收集的圆柱的表面积教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

圆柱的表面积教学设计1
教学内容:六年级第十二册
教学课时:第二单元第二课时 教学目标
1、认识圆柱的表面积,理解圆柱表面积的含义.
2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.
3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.
重点:认识圆柱的表面积,理解圆柱表面积的含义.
难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:
1、圆柱体教具一个
2、学生每人准备圆柱形模型两个;
剪刀;
教学过程:
一、复习引入
1、圆柱有哪些特征?它各部分名称叫什么?
2、学生回答后,让学生拿出自己做的模型,指出哪一部分是侧面.
3、引入新课。
二、新课教学
(一)出示学习目标:
1、理解圆柱的侧面积和表面积的含义。
2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。
3、认识取近似值的进一法。
4、学习推导方法。
(二)圆柱的侧面积
1、出示自学提示:
(1)、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?
(2)、推导出圆柱体侧面积的计算公式。
小组合作注意:组长负责次序,同学之间尊重他人,懂得谦让,互相帮助。
2、学生汇报交流。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
3、推导公式。
侧面积=底面周长×高
4、口答
把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。
(二)、圆柱的表面积
1、出示自学提示:(1)、思考怎样求圆柱体的表面积?
(2)、讨论:求圆柱体的表面积需要知道哪些数据?
小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。
2、学生汇报交流。
3、推导公式。
圆柱的表面积=底面积×2﹢侧面积
(三)运用公式计算。
1、求下面各圆柱体的侧面积。(只列式不计算)(1)、底面周长1.6米,高是0.7米。(2)、底面半径是3.2分米,高是5分米。(3)、底面直径是10厘米,高是25厘米。
2、求上面各圆柱体的表面积(分步口答)
3、出示例3 学生独立完成.指名板演,然后小组内交流。
教师:注意,这里不能用“四舍五入”法取近似值.在实际生活中,使用的材料都要比计算得到的`结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫进一法.
三、课堂小结
大家回顾一下今天我们学了什么内容?计算时要注意什么? 《圆柱的表面积》教学反思
屏南实验小学 韦 斌
整个教学过程,学生兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片通过学生动手动脑,来突破难点;
引导学生在应用中加深认识,形成能力。
动手实践,主动探索和合作学习是学习数学的重要方式。而在儿童的精神世界中,这种需要特别强烈。因此,数学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
本节课,教师通过让学生动手制作圆柱体模型,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
教师为学生提供了基本题以及多向思维的,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。
学习目标:
1、理解圆柱的侧面积和表面积的含义。
2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。
3、认识取近似值的进一法。
4、学习推导方法。
自学提示:
1、认真观察自己手中的长方形,思考这个 长方形与圆柱体的哪一部分有关系?
2、推导出圆柱体侧面积的计算公式。小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。
把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽 等于圆柱体的(),因为长方形的面积等 于(),所以圆柱体的侧面积等于()。
自学提示:
1、思考怎样求圆柱体的表面积?
2、讨论:求圆柱体的表面积需要知道哪些数据? 小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。
求下面各圆柱体的表面积
求下面各圆柱体的侧面积。(只列式不计算)
1、底面周长1.6米,高是0.7米。
2、底面半径是3.2分米,高是5分米。
3、底面直径是10厘米,高是25厘米。
目标检测:
一个没有盖的圆柱形铁皮水桶,高 是24厘米,底面直径是20厘米,做这 个水桶要用铁皮多少平方厘米?
(得数保留整百平方厘米)
拓展题:
一个圆柱体的侧面展开是一个边长为 25.12厘米的正方形,求这个圆柱体 的表面积。
给下面的物体分类。
圆柱的表面积教学设计2
一、设计理念及设计思路。
建立促进学生全面发展的数学课程体系是新课程改革的重要任务。数学要从以获取知识为着重目标转变为首先关注学生的发展,创造一个有利于学生活泼发展的教育环境,提供给学生一个充分探究、创新发展的空间。在学习中,学生是学习的主体,教师是教学活动的组织者、引导者和合作者。在这一教学理念的指导下,我在设计本节课时,重点和难点之处都是安排学生进行动手操作,讨论交流,学生参与到知识获取中,真正理解了圆柱的侧面积为什么是底面周长×高,并能运用公式灵活计算。
数学学习活动不单是单纯的接受与记忆,而是让学生亲身经历和体验富有个性的探究过程。因此设计剪一剪、看一看、找一找、议一议等教学活动。
二、教学目标。
知识与技能:
1、理解表面积的含义;
2、掌握圆柱的侧面积,表面积的计算方法,会运用公式计算表面积,解决有关的简单实际问题。
过程与方法:
经历圆柱的'侧面积、表面积的公式的发现过程,体验利用旧知识迁移学习的方法。
情感态度与价值观:
感悟数学知识的能力,体会数学知识之间的相互联系。
重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。
难点:灵活运用侧面积、表面积的有关知识解决实际问题。
教学准备:投影仪,圆柱模型、小剪刀。
三、教学过程。
(一)、复习引入。(投影出示)
(1)口答下列各题:
①圆的半径是1厘米,圆的周长是多少?面积是多少?
②长方体、正方体的表面积如何计算。(单位:厘米)
3 3
4 3
5 3
你能算出它们的表面积吗?
(2)引入新课:我们已经掌握了长方体、正方体的表面积的计算方法,今天我们要来探讨圆柱表面积该如何计算。
板书课题:圆柱的表面积
(二)、探究新知。
(1)圆柱的表面积的含义。
师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?(讨论、交流)
学生得出结论:圆柱的表面积=圆柱的侧面积+两个底面积
(2)计算圆柱的表面积。
①组织学生将自制的圆柱模型展开分组学习。
②侧面展开可能会出现以下几种情况:长方形、正方形、平行四边形。
③以长方形为例,指导学生观察联系。
长方形的长等于圆柱底面的周长,宽等于圆柱的高。
得出结论:长方形的面积= 长 × 宽
圆柱的侧面积=底面周长 × 高
师:圆柱的两个底面是圆形,我们早就会计算它的面积了,现在我们又推导出圆柱的侧面积计算公式,那么你们知道计算圆柱的表面积吗?
(3)解决实际问题。
①投影出示例4:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(复数保留整十平方厘米)
②组织学生读题,找出条件,说说实际是求什么问题。分组学习
③学生独立完成计算。
④反馈订正。
订正时让学生讲解题思路和步骤及计算结果取近似值的方法。
强调:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些,因此要用“进一法”取近似值。
三、课堂小结:圆柱的表面积怎样计算?
四、应用反馈。(独立完成计算)
1、一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
2、广告公司制作了一个底面直径是1.5m,高2.5m的圆柱形灯箱,它的侧面最多可以张贴多大面积的海报?
板书设计:
圆柱的表面积
圆柱的表面积= 圆 柱 侧 面 积 + 两 个 底 面 积
宽(圆柱的高)
长(底面圆的周长)
圆柱侧面积=底面周长×高
圆柱的表面积教学设计3
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是xxx 、xxx和xxx。
2、底面是xxxx形,它的面积=xxx。
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个xxx形。它的长等于圆柱的xxx,宽等于圆柱的xxx。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的'侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=xxx,所以圆柱的侧面积=xxxx。
(3)侧面积的练习
求下面各圆柱的侧面积。
①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的xxx和xxx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的表面是由xxx和xxx组成。
(2)圆柱的表面积的计算方法:
圆柱的表面积=xxx
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的xxx。需要注意的是厨师帽没有下底面,说明它只有xx个底面。
列式计算:
① 帽子的侧面积=xxx
② 帽顶的面积=xxx
③ 这顶帽子需要用面料=xxx
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
圆柱的表面积教学设计4
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是xx、xx和xx。
2、底面是xx形,它的面积=xx 。
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个 xx形。它的长等于圆柱的xx,宽等于圆柱的xx。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= xx,所以圆柱的侧面积= 。
(3)侧面积的练习
求下面各圆柱的侧面积。
①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的 xx和xx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的表面是由和组成。
(2)圆柱的表面积的计算方法:
圆柱的表面积=
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。
列式计算:
①帽子的侧面积=
②帽顶的面积=
③这顶帽子需要用面料=
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
布置学生课下复习本节课内容。
教学反思
本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的'推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
圆柱的表面积教学设计5
一、教学目标:
1、知识与技能目标:理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
2、过程与方法目标:操作活动中,使学生经历认识圆柱的侧面积和表面积的过程,掌握它们的特征。
3、情感态度目标:通过观察、想象、操作等活动,让学生体验到数学知识的广泛性、挑战性,数学与生活的联系。
二、教学重难点
教学重点:应用圆柱体侧面积和表面积的计算方法,解决实际问题
教学难点:探究并推导出圆柱侧面积、表面积的计算公式。教学准备:实物圆柱体、多媒体课件
三、新授课
(一)、温故引新巧妙入境
1、上节课,我们一起学习了一种新的立体图形,是什么?在日常生活中我们也见到过许许多多的圆柱形物体,想一想,它们有什么共同特征?
2、哦,仅仅通过一节课的学习,大家就掌握了这么多关于圆柱的知识,真了不起!
今天,我们学校前面的加工厂接了一桩大生意,让我们一起来看看!(电脑出示)
(二)、情境探究引出主题(1)、出示产品订货单 产品类型:薯片盒
产品规格:底面半径为3厘米,长10厘米。订购数量:10000个 交货日期:20xx年5月13日 订购单位:苗苗副食品加工厂 订货时间:20xx年4月27日
如果你是这家工厂的老板,你首先会考虑什么问题?他该购进多少材料呢?大家愿不愿意帮他解决这个问题?
(三)、动手操作结合课件理解重难点
1、认识表面积。
请同学们拿出课前准备的圆柱纸筒,现在假如它就是一个薯片盒,你们能算出做这样的一个薯片盒,需要多少材料吗?其实这就是求圆柱形薯片盒的?
以前我们学过长方体和正方体的表面积,想一想,圆柱的表面积应该指什么?(一生边指边说)
那你能用一个等式来表示圆柱的表面积吗?圆柱的侧面积加上两个底面的面积就是圆柱的'表面积。现在一边指着薯片盒一边把刚才的发现说两遍!(生说师板书)指着式子问:我们已经会求什么了?难点是什么?所以这节课,我们就重点研究圆柱的侧面积。
2、探究圆柱侧面积的求法。
拿出你们带来的圆柱形物体,动手操作,去探究,去发现!在探究之前,请先看老师给你的探究提示。(大屏幕出示探究提示:a、你能把圆柱的侧面转化成我们已学过的平面图形吗?
b、转化后的图形与圆柱的哪部分有关系?有什么关系?你能推导出圆柱侧面积的计算公式吗?)
先自己思考,然后再小组内讨论。
汇报各组的发现。预设:学生可能在探究的过程中转换成不同的图形,重点感受圆柱体侧面沿高剪开后是一个长方形。
老师看大多数同学都把圆柱的侧面转化成长方形,那这个长方形与圆柱的哪部分有关系,有什么关系?谁来继续汇报?
真的像同学们说的这样吗?请看大屏幕!
真的像许多同学说的那样,圆柱体的侧面沿高剪开后是一个长方形,长方形的宽相当于圆柱的高,那么,长方形的长呢?请同学们认真看大屏幕!说说你看到了什么?
看到这里,你能根据长方形的面积公式推导出圆柱侧面的面积公式吗? 你是怎样推导的?小组内说一说,一会儿看谁能到黑板上把自己的推导过程清晰地写出来?(有的学生可能把圆柱的侧面转化成其他图形,让学生说说自己的想法。然后电脑动画演示这些图形都能转化成长方形)
3、完成完整的表面积推导公式。
(四)、巩固应用拓展提高
1、基本练习
求圆柱体的侧面积,只列式,不计算 a、底面周长 10米,高0、5米 b、底面半径2分米,高5分米 c、底面直径20厘米,高5厘米 求圆柱体的表面积,只列式,不计算 a底面周长10米,高0、5米 b底面半径2分米,高5分米 c底面直径20厘米,高5厘米
2、变式练习
a现在,你能帮助加工店的老板解决问题了么? 思考:
生活中求一个圆柱形物体的用料情况时,是不是都得用:侧面积加两个底面积呢?举例说明。课件出示
要求下列圆柱形物体用料的面积,应计算哪些面的总面积? 油桶、笔筒、下水管、通风管
通过这道题,你想提醒提醒大家什么? b想想,在练习本上做下面的题
(1)、一个圆柱形铁桶(无盖),高5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
(2)、一个圆柱底面直径是5厘米,把它的侧面展开正好是一个正方形,它的侧面积是少平方厘米?
(3)、一个圆柱形水池,从池里面量,底面直径是4米,深1.5米。在池的内壁与底面抹上水泥,抹水泥部分的面积是多少平方米?
3、发展练习
(1)、把一根长2.1米,底面半径是0.5分米的圆柱形钢材平均截成3段,表面积增加了多少?
(2)、做一个直径是30厘米的铁皮烟囱,高3.2米,接口处占2厘米,至少要用铁皮多少平方米?
课堂小结:通过本节课你有哪些收获? 布置作业:
圆柱的表面积教学设计6
教学目标:
1、理解圆柱侧面积和圆柱表面积的含义。
2、掌握圆柱侧面积和表面积的计算方法。
3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。
教学重点:
掌握圆柱侧面积和表面积的计算方法。
教学难点:
运用所学的知识解决简单的实际问题。
教学准备:
多媒体课件
教学过程:
一、创设情景
1、复习圆柱的特征。
2、大屏幕出示问题,学生口头回答:
(1)一个圆形花池,直径是5米,周长是多少?面积是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽
二、探究新知
1、教学圆柱的侧面积。
(1)大屏幕出示课题:圆柱的表面积。
(2)理解“圆柱的侧面积”的含义。用手指出实物圆住的侧面积。
(3)大屏幕出示圆柱的侧面展开图,思考:圆柱的侧面积应该怎样计算呢?引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,推出:圆柱的侧面积=底面周长×高
2、小结。
要计算圆柱的侧面积,必须知道什么条件?如果题目只给出直径或半径,又如何求圆住的侧面积呢?
3、理解圆柱表面积的含义。
观察自己制作的圆柱模型:圆柱的表面由哪几个部分组成?那么,圆柱的表面积是指什么?大屏幕:圆柱的表面积=圆柱侧面积+两个底面的面积
4、教学例4。
(1)大屏幕出示例4的题目。
思考:这道题已知什么?求什么?要求圆柱的.表面积,应该先求什么?后求什么? (2)学生试着解答。
(3)全班交流:为什么只求了一个底面面积呢? (4)小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
5、巩固练习:完成第14页的“做一做”。
三、课堂小结
圆柱的表面积指的是哪几个面?如何求圆柱的表面积?
四、作业
完成练习二的5——7题。
五、思维训练
1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的( )。
2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求( )与( )的( )。
圆柱的表面积教学设计7
教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:圆柱形物体、学具、多媒体课件
教学重点:圆柱侧面积的计算方法推导。
准备:课前布置学生用纸片试做一个圆柱体。
教学过程:
一、交流做圆柱体的情况。
师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。
生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。
生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。
生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。
师:这说明什么呢?
一生抢着说:“原来底面圆的周长等于长方形的长”。
二、探索圆柱表面积的计算方法。
(1)引入
师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?
生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)
师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?
生:把圆柱剪开,变成我们学过的图形。
师:下面分小组探索圆柱的表面积的计算方法。
(2)小组汇报
生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的.底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2
生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。
师:还有不同方法吗?
生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。
师:这样做的结果是一样的,有什么道理呢?
(生陷入思考)
师:从公式看2个底面圆跑到哪去了呢?
一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。
师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。
师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?
生1:半径或直径和高。
生2:有周长和高也行。
生3:我发现已知周长和高,用第二种方法计算比较快。
师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。
三、自学例3
师:注意思考:(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?
(2)什么叫“进一法”?什么情况下要运用进一法?
生1:这个水桶只有一个底面,不能多算成2个。
生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。
师:在一些用料问题上,我们要根据实际情况来考虑。
四、 计算练习(出了3道题)
由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。
反思:
这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。
一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。
二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。
三、我也体验到了怎么教数学。
(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。
(2)立足发展学生的能力,设计课堂教学的策略。
(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。
四、不足改进。
在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。
圆柱的表面积教学设计8
教学目标:
1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。
2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。
3、进一步培养学生的动手操作能力,发展学生的空间观念。
教学重点:
圆柱体的表面积公式的推导。
教学难点:
圆柱体侧面积公式的推导
教学过程:
活动一:
教师出示喝水用的杯子,提问是什么形状?
进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?
学生思考并提出数学问题。
活动二:
1、教学圆柱体表面积的意义
教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?
学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。
教师板书课题。
请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?
概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积
板书:侧面积 + 一个底面积×2 = 表面积
2、引导学生探究圆柱体侧面展开图
⑴设疑:我们已经会求什么面的面积?还有什么面的`面积不会求?
⑵引导:想一想,能否将这个曲面转化成我们学过的平面图形?
⑶小组合作进行探究。
⑷小组汇报交流研究成果。
3、探究圆柱体侧面积计算方法
教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?
在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长
×高。
教师:你能求出做这个圆柱形杯子需要多少铁皮吗?
学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。
活动三:
课件出示闯关题,让学生进行抢答。
活动四:
1、请同学谈收获
2、教师小结:
今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。
活动五:
布置作业:教科书五十页自主练习的第1题。
圆柱的表面积教学设计9
一、教学目标:
1、知识目标:通过教师的引导和学生的探究使学生理解圆柱体的侧面积和表面积的计算方法,并会正确计算。
2、能力目标:①运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;②使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法。
3、情感目标:①让学生体验出自己探究发现的快乐;②感受到数学与日常生活联系广泛,激发起热爱数学的情感。
二、教学重点:
探究求圆柱体侧面积、表面积的计算方法,并能正确进行计算。
三、教学难点:
能灵活运用表面积、侧面积的有关知识解决实际问题。
四、教具准备:幻灯、 圆柱表面展开图
五、学具准备:长方形纸、剪刀、圆柱体纸盒。
六、教学过程:
(一) 复习导入,推出新知。
师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?
生:长方形。
师:面积如何求?
生:长方形面积=长×宽。(师板书)
师又拿出正方形,平形四边形,问相同的问题,再拿出圆形。
师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?
师;上节课,我们认识了圆柱,关于圆柱,你都知道它的 哪些知识?它有什么特点?
这节课,我们就再一起来学习有关圆柱的知识。(板书课题)
(二)创设情境,激发学生兴趣。
拿出圆柱体茶叶罐,摸一摸,说说你都摸到了哪些面。 师:想一想工人叔叔做这个茶叶罐是怎样用料的?(学生会说出做两个圆形的底面再加一个侧面)
那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)
(三)引导探究,学习新知
1.圆柱的侧面积的计算方法。
(1)推导侧面积公式
师:圆柱侧面是一个曲面,如何计算它的面积呢?下面同学们四人一组对照手中的圆柱体学具进行讨论。
讨论题目是:
a:展开图是什么形状?与圆柱体的底面有哪些关系? b:你能推导出圆柱体侧面积计算方法吗?
学生合作探索,然后学生汇报讨论结果。
生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
生:这个长正方形的'边长等于圆柱体的底面周长,另一边长等于圆柱的高,正方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
生:这个平形四边形的底等于圆柱体的底面周长,高等于圆柱的高,平形四边形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。
教师小结:强调转化的数学方法
老师板书公式。
2、圆柱表面积的意义
设疑:什么是圆柱的表面积呢?学生看圆柱体,说一说,议一议。
教师概况并板书:侧面积+两个底面积=表面积
3、圆柱的表面积。
(1)推导公式。
师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)
生汇报讨论结果,老师板书公式:
S表=S侧+2S圆
(2)利用公式计算。
(课件出示)
例1 计算圆柱体的表面积(见下图)。(单位:厘米)
同学说思路,老师板书,注意每一步结果写计量单位。 ①侧面积:2×3.14×5×15=471(平方厘米)
②底面积:3.14×52=78.5(平方厘米)
③表面积:471+78.5×2=628(平方厘米)
答:它的表面积是628平方厘米。
例2 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)
同学说思路,列式。
(1)水桶的侧面积
3.14×20×24=1507.2(平方厘米)
(2)水桶的底面积
3.14×(20÷2)2
=3.14×102
=3.14×100
=314(平方厘米)
(3)需要铁皮
1507.2+314=1821.2≈1900(平方厘米)
答:做这个水桶要用铁皮1900平方厘米。
小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?
圆柱的表面积教学设计10
教学内容:练习六第3~9题。
教学目标:
1、使学生理解和掌握圆柱侧面积和表面积的计算方法,能根据实际生活情况解决有关圆柱
表面积计算的实际问题。
2、在解决实际问题中,加深理解表面积计算方法,发展学生的空间观念。
3、让学生进一步密切数学与生活中联系,能够初步学以致用。
教学重点:
能根据实际生活情况解决有关圆柱表面积计算的实际问题。
教学难点:
灵活运用所学知识解决实际问题的能力。
教学准备:
与练习六中的练习相关的图片。
教学过程:
一、复习引入
1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?
2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。
二、基本练习
1、出示练习六第3题,理解表格意思。
2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后填写在书中表格里,再交流方法和得数。
3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后填写在书中表格里,再交流方法和得数。
4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?
各自计算,算后交流方法和得数。
三、巩固练习
1、完成练习六第4题。
⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?
⑵各自练习后交流算法。
2、完成练习六第5题。
⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?
⑵各自练习后交流算法和结果。
3、讨论练习六第7题。
⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?
⑵看看,这个博士帽是怎么做成的,包括哪几个部分?
⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。
你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?
⑷各自计算,算后交流算法和结果。
⑸如果要做10顶呢?怎么算?
3、讨论练习六第8题。
⑴出示题目,让学生读题,理解题目意思。
⑵讨论:塑料花分布在这个花柱的哪几个面上?
要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?
算出上面和侧面的面积后,怎么算?为什么?
4、讨论解答练习六第9题。
⑴出示题目,读题,理解题目意思。
⑵尝试列式。
⑶交流算法:
这题先算什么?再算什么?最后算什么?
怎么算一根柱子的侧面积的?为什么不要算底面积?
四、小结
通过本节课的学习,你学会了什么?
学生交流
五、作业
完成《练习与测试》相关作业
板书设计
圆柱的表面积
圆柱的体积
教学内容:教科书第25~26页的例4、“试一试”、“练一练”。
教学目标:
使学生经历观察、猜想、操作、验证、交流和归纳等数学活动的过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
教学重点:
掌握和运用圆柱体积计算公式
教学难点:
圆柱体积公式的推导过程
教学准备:多媒体
教学过程:
一、复习引入
1、呈现例4中长方体、正方体和圆柱的直观图。
2、提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱的体积怎么算?
3、引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、教学例4
1、观察比较
引导学生观察例4的三个立体,提问:
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2、实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的.想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
课件演示,使学生清楚地认识到:拼成的立体会越来越接近长方体。
3、推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式:
圆柱的体积=底面积×高
⑶引导用字母公式表示圆柱的体积公式:V=sh
三、教学“试一试”
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
四、巩固练习
1、做“练一练”第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2、做“练一练”第2题。
说说为什么要从里面量?如果从外面量算出的是什么?
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
学生交流
六、作业
完成练习与测试相关作业
板书设计
圆柱的体积
圆柱的表面积教学设计11
【教学目的】:
1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
2、培养学生分析推理,解决实际问题的能力。
3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。
4、在计算机操作中培养学生的信息素养。
【教学重点】:
使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
【教学难点】:
在计算机操作中培养学生的信息素养。
【教具准备】:
计算机辅助教学课件一套。
【教学过程】:
一、创设情境,提出问题。
1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)
2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)
二、自由选择,自学新知。
1、电脑显示: 自学新知a 自学新知b
说明:在学习新的知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。
2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。
(展开侧面)
自学新知a:
(1)
长方形
底面周长
高
长方形面积=
圆柱的侧面积=
(2)
底面
底面
侧面
圆柱表面
(动画)
圆柱的表面积=
(3)小组讨论:
(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?
(2)求圆柱的底面积必须具备什么条件?
自学新知b:
(1)思考:把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱底面的(),宽等于圆柱的()。
长方形面积= ×
圆柱的侧面积= ×
(2)思考:圆柱的侧面积加上两个底面积就是圆柱的表面积,
所以:圆柱的表面积= +
(3) 小组讨论:
(1)求圆柱的侧面必须具备什么条件?如果底面周长没有直接告诉,可以通过什么条件求底面周长?
(2)求圆柱的底面积必须具备什么条件?
三、初步应用,尝试例题。
学生在学习完自学新知后,进入尝试例题:(注:每道例题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
电脑显示:
例1:一个圆柱,底面的直径是0。5米,高是1。8米,求它的侧面积。(得数保留两位小数)
例2:一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
例3:一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
提示学生在做完例3后,查阅知识点::这里不能用四舍五入法取近似值,在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。
四、灵活选择,星级题库。
1、师说明:大家在做例题时,完成得都挺不错,下面就请大家把今天所学的`知识运用到练习当中,这里有三星题库,题目依次由易到难,请每位同学根据自己的能力,自由选择一星、二星或三星。
2、生自由选择,有困难可以与老师、同学间交流。(注:每道练习题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
题库:
1、 一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积?
2、 一个圆柱,底面直径是2分米,高是45分米,求它的表面积?
题库:
1、 砌一个圆柱形的沼气池,底面直径是3米,深是2米,在池的周围与底面抹上水泥,抹上水泥的部分面积是多少平方米?
2、 一个压路机的前轮是圆柱,轮宽1。5米,直径1。2米,前轮转动一周,压路的面积是多少平方米?
题库:
1、 一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?
2、 一个没有盖的圆柱形铁皮水桶,高是12分米,底面直径是高的3/4,做这个水桶大约用铁皮多少平方分米?(用进一法取近似值,得数保留整十平方分米)
五、课外知识,开阔视野。
1、师:练习完成又快又好的同学,可以点击课外知识,查阅其它的数学知识。
2、学生点击课外知识:链接北京科教信息网
1、师小结本节课所学内容。
2、学生点击布置作业,查看作业内容:
给一个圆柱形罐头盒加外包装,在计算材料时,注意使用“进一法”。
圆柱的表面积教学设计12
教学内容:
北师大版六年级数学下册圆柱的表面积。
教学目的:
1、理解什么是圆柱的表面积,知道怎样计算圆柱的表面积。
2、能够利用学具动手操作、动脑思考推理圆柱的侧面积和表面积的计算公式。
3、能够运用所学知识解决实际问题,知道数学知识应用于生活实际时应结合具体情境。
4、培养动手操作、动脑思考的习惯和知识迁移的能力。教学重难点:圆柱侧面积计算公式的推理。
教学准备:
教师准备:长方体模型、多媒体课件。
学生准备:圆柱形纸盒、剪刀。
教学过程:
一、创设情境,导入新课。教师出示长方体模型。
提问:(1)长方体的表面积指什么?(六个面的面积之和)(2)如何计算长方体的表面积?(把六个面的面积加在一起)
多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)
教师:至少需要用多大面积的纸板?也就是要计算什么?(圆柱的表面积)圆柱的表面积指什么?(三个面的面积之和)
如何计算圆柱的表面积?(把三个面的面积加在一起)
教师:圆柱的表面积就是它的三个面的面积之和,要计算圆柱的表面积只需
把三个面的面积加在一起,这节课我们就来研究圆柱的表面积。(板书课题:圆柱的表面积)
(由长方体的表面积导入圆柱的表面积,知识的迁移自然,学生容易理解圆柱的表面积)
二、自主探究,合作学习
教师:你能试着计算这个圆柱的表面积吗?(学生试算,教师巡视)
教师:我发现同学们都只计算了两个底面的面积,还有一个侧面的面积呢?(设置难题,激起学生的探究欲望)
教师:我们知道圆柱的侧面是一个曲面,能不能想办法把它转化成我们学过的图形呢?你猜想圆柱的侧面展开会是什么图形?(学生猜想:长方形、正方形、平行四边形······)
教师:你能想办法验证一下你的猜想吗?
(一)圆柱的侧面展开
1、学生利用课前准备的学具分组活动,教师巡视并参与学生活动。2、汇报质疑:学生到讲台上汇报展示圆柱的侧面展开图,教师多媒体演示。①圆柱的侧面展开后是长方形,我竖直把圆柱的侧面剪开得到一个长方形。
②圆柱的侧面展开后是平行四边形,我斜着把圆柱的侧面剪开得到一个平行四边形。
③圆柱的侧面展开后是长方形,因为我用一张长方形的纸卷成了一个圆柱。
④圆柱的.侧面展开后是长方形,因为我把圆柱滚动一周发现圆柱侧面走过的是一个长方形。
(动手操作,动脑思考,方法多样,为推理侧面积的计算公式打下基础。)(二)圆柱侧面展开图与圆柱的关系
1、教师:同学们做的真是太好了,那你发现圆柱侧面展开图与圆柱有什么关系呢?请同学们观察、讨论一下。(学生观察、讨论,教师巡视并参与讨论)
2、汇报质疑:学生到讲台上汇报展示,教师在黑板上画图演示。
①圆柱的底面周长
②圆柱的高
(三)圆柱的侧面积计算公式的推导
1、教师:你能根据长方形或平行四边形的面积计算方法得出圆柱的侧面积的计算方法吗?请同学们再观察、讨论。(学生观察、讨论,教师巡视并参与讨论)
2、汇报质疑:学生汇报展示,教师板书演示。
圆柱的底面周长
长方形的面积=长×宽
圆柱的侧面积=底面周长×高
平行四边形的面积=底×高
圆柱的底面周长
圆柱的侧面积=底面周长×高
教师:如果我们用S侧表示圆柱的侧面积,用C表示圆柱的底面周长,h表示圆柱的高,那么圆柱的侧面积计算公式应该是什么?(学生回答,教师板书)
S侧=Ch
汇报交流,质疑问难,计算表面积。
1、多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)
30
教师:现在同学们能计算这个圆柱的侧面积了吗?(学生计算,教师巡视指导,请学生板演)
S侧=Ch=2×3、14×10×30=1884(平方厘米)
2、教师:那么现在你能计算这个圆柱的表面积吗?(学生计算,教师巡视)汇报交流,总结算法,并请学生板演。侧面积:2×3.14×10×30=1884(平方厘米)底面积:3.14×102=314(平方厘米)表面积:1884+314×2=2512(平方厘米)3、教师:你能总结圆柱的表面积计算方法吗?圆柱的表面积=侧面积+底面积×2巩固练习,应用新知。计算下列圆柱的表面积。
教师:你能运用学到的知识计算下列圆柱的表面积吗?下面三个圆柱有什么不同?
圆柱的表面积教学设计13
课题圆柱的表面积教时一3(3)
学习
目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
学习
重点掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
过程与方法
教师活动
一、基本练习
二、实际应用
求压路的面积是求什么?
三、实践活动
学生活动
说说计算方法。
说自己的想法,独立解答。
说自己的想法,独立解答。
学生讨论后完成。
学生实际操作。
板书设计
圆柱的表面积教学反思
学生掌握了求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。但是个别学生计算的不准。
课题圆柱的表面积教时一4(4)
学习
目标1、进一步理解圆柱体侧面积和表面积的含义。2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
学习
重点掌握求圆柱的'侧面积、表面积的方法,并能运用到实际中解决问题。
过程与方法
教师活动
实际应用
1、
2、
3、
学生活动
指名读题,说出题意以及解题思路,然后指名做出。
结合生活实际进一步明确题意,以便做出。
学生互评互议。
板书设计
圆柱的表面积
圆柱的表面积 = 圆柱的侧面积+底面积×2
教学反思
在实际应用中,简单的问题还能轻松完成。
圆柱的表面积教学设计14
教材内容和在本册教材中的地位:
《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。
学情分析:
学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。
教学目标:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重难点:
重点
圆柱表面积的计算。
难点
圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。
教学过程
一、激趣导入
(复习圆柱体的特征)
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
师:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、目标定向
1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、我能通过对已有知识的迁移,探索新知识。
三、自主合作
(一)圆柱表面积的意义。
设疑:1、长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(三)圆柱体侧面积的计算
1、引导探究圆柱体侧面积的计算方法。
设疑:圆柱的侧面是个曲面,怎样计算它的`面积呢?
想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?
2、计算圆柱体的侧面积。
(四)求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
四、交流展示
(一)汇报圆柱表面积的意义。
底面积×2+侧面积=表面积
(二)圆柱体侧面积的计算
1、小组合作探究。(剪圆柱形纸筒)
2、汇报交流研究结果,各小组展示。
3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
(三)以小组为单位自己做例4,做完组长检查。
五、拓展延伸
1、求出下面各圆柱的侧面积.
(1)底面周长是1.6米,高是0.7米
(2)底面半径是3.2分米,高是5分米
2、计算下面各圆柱的表面积.(单位:厘米)
(1)底面直径是12米,高是16米
(2)底面半径是3.2分米,高是5分米
3、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?
2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?
板书设计
圆柱的表面积
底面积=圆面积
底面积×2+侧面积=表面积
课后反思:
我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。
1、实践操作
在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
2、精讲多练。
新知的获得时间要短,课后的练习要从易到难。
本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。
数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。
圆柱的表面积教学设计15
教学目标
1.理解圆柱的侧面积和表面积的含义。
2.掌握圆柱侧面积和表面积的计算方法。
3.会正确计算圆柱的侧面积和表面积。
教学重点
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点
能灵活运用表面积、侧面积的有关知识解决实际问题。
教学过程
一、复习准备
(一)口答下列各题(只列式不计算)。
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征。
二、探究新知
(一)圆柱的侧面积。
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。
(二)教学例1.
1.出示例1
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)
2.学生独立解答
教师板书: 3.140.51.8
=1.75l.8
2.83(平方米)
答:它的侧面积约是2.83平方米。
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。
(三)圆柱的表面积。
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
2.比较圆柱体的表面积和侧面积的区别。
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
(四)教学例2.
1.出示例2
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2.学生独立解答
侧面积:23.14515=471(平方厘米)
底面积:3.14 =78.5(平方厘米)
表面积:471+78.52=628(平方厘米)
答:它的表面积是628平方厘米。
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。
(五)教学例3.
1.出示例3
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的`圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。
3.学生解答,教师板书。
水桶的侧面积:3.142024=1507.2(平方厘米)
水桶的底面积:3.14
=3.14
=3.14100
=314(平方厘米)
需要铁皮:1507.2+314=1821.21900(平方厘米)
答:做这个水桶要用1900平方厘米。
4.教师说明:这里不能用四舍五入法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
5.四舍五入法与进一法有什么不同。
(1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。
(2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。
三、课堂小结
这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。圆柱的表面积在实际应用时要注意什么呢?
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
四、巩固练习
(一)求出下面各圆柱的侧面积。
1.底面周长是1.6米,高是0.7米
2.底面半径是3.2分米,高是5分米
(二)计算下面各圆柱的表面积。(单位:厘米)
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)
五、课后作业
(一)砌一个圆柱形的沼气池,底面直径是3米,深是2米。在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?
(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
【圆柱的表面积教学设计】相关文章:
《圆柱的表面积》教学设计05-15
圆柱的表面积教学设计09-20
圆柱的表面积教学设计优秀03-12
【优秀】《圆柱的表面积》教学设计05-16
《圆柱的表面积》教学设计(精选15篇)05-16
圆柱的表面积教学设计15篇【通用】09-20
圆柱的表面积说课稿01-17
圆柱的体积教学设计09-17
《圆柱的体积》教学设计08-31
“圆柱的体积”教学设计08-13
