圆的面积教学设计
作为一名默默奉献的教育工作者,时常需要用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么什么样的教学设计才是好的呢?以下是小编精心整理的圆的面积教学设计,欢迎大家分享。

圆的面积教学设计1
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的合作精神和创新意识。
教学重点:
推导出圆的面积公式及其应用。
教学难点:
圆与转化后的.图形的联系。
教具、学具:
剪刀、图片,圆片4等份……64等份的拼图对比挂图。
教学过程:
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、转化后的图形与原来的图形面积相等吗?(板书:等积)
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。
圆的面积教学设计2
设计过程:
一、教材分析
教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。
二、学情分析
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
基于以上的教材和学情分析,我制定了以下的教学目标:
三、教学目标
1、认知目标:
提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。
2、能力目标:
培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。
3、情感目标:
通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。
教学重点:
正确掌握圆面积的计算公式。
教学难点:
圆面积计算公式的推导过程。
四、教学过程
(一)创设问题情境,激发学生学习兴趣
1、感知圆的面积:(课件出示一大一小的圆)
师:圆的大小是由什么决定的?(板书:由半径决定)
2、感知圆的面积有大有小:
(选择两个面积不同的圆)
师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。
师:那谁能说说什么叫做圆的面积?
(揭示:圆所占平面的大小叫做圆的面积。)
[设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的`意义打下良好的基础。
(二)学生合作探索,交流操作经验
1、初步感悟:
(1)课件出示:书103例7图。
师:图中每一小格表示1平方厘米。你知道正方形的面积是多少么?
原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。
通过数圆的面积,得到整圆的面积,然后把表格填完整。
学生填表、计算,汇报
小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的面积的计算公式。
2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。
师:那么,这节课我们就来共同找出求圆面积的方法。
3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)
[设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。
师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)
[设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。
4、师:刚才我们已经复习了以前我们利用平移、割、补等方法推导平行四边形面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?
你想采用什么方法把圆转化成学过的图形?
[设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。
师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。
[注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。
师:请大家把各自的拼图展示给大家(鼓励不同的拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)
[设计意图:放手让学生自己动手把圆剪拼成各种图形,鼓励不同拼法,引导发挥联想,让学生通过比较得出沿半径剪拼的方法是较为科学的,教学中注重对学生进行思维方法的指导,给学生提供了自行探究,创造性寻找解决问题的方法和途径,使学生不仅会知法,而且会选法,这对提高学生的动手能力,培养学生良好的思维品质,具有十分积极的作用。
(三)利用课件演示,呈现经验总结
[注:由于学生的个体不同,收获也有不同,以往只通过实验操作的方式,学生会在操作中出现很多不确定的因素,如有的完成不了实验,有的误差很大等等,没有充分的说服力,不能帮助学生对圆的面积进行充分理解。直接影响了本堂课的教学效果,而且学生几何知识的形成,感知的知识往往是片面的,零散的,不完整的,所以在学生充分动手操作后,又为学生提供了教学软件来帮助学生理解和观察这一个实验的过程,能更好地培养学生空间想象能力、逻辑推理能力以及创造性思维能力。所以我们借助现代信息技术,帮助学生建立完整的空间观念,帮助学生建构。
圆的面积教学设计3
教学内容浙教版小学数学第十一册教材P141—143、例1
教材分析《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。让学生用这种数学思想和方法来解决新的比较复杂的'问题。教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的面积公式推导出圆面积计算公式。
学情分析在之前,学生已认识了各种平面图形的特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。
教学目标
1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2.能够利用圆面积公式进行计算。
3.培养学生动手操作、观察分析、概括推理的能力。
教学重点圆面积计算公式的推导和利用公式进行正确计算。
教学难点极限思想的渗透与圆面积公式的推导过程。
教学准备多媒体课件、 圆的平面图形1个、剪刀、直尺等
教学过程
一、创设情境
1.播放录像:美丽的校园景色、各种形状的花坛。
问:你能计算出它们的占地面积吗?
2.媒体演示(从各种形状的花坛中提炼出下面的图形)。
(1)学生说出这些图形的面积计算公式。
(2)用什么方法推导出三角形面积计算公式的?
教师板书:
剪拼
要学的图形 已学的图形
转化
3.媒体出示圆形。
今天要学习圆的另一个知识,就是圆占平面的大小叫圆的面积。(请学生摸一摸哪里是圆的面积?)
(板书课题:圆的面积)
二、公式推导
1.提出问题,制定方案
(1)小组讨论:对于圆我们前面已经学习了什么?圆与以前我们研究的平面图形有什么不同?你想通过什么方法推导圆的面积公式?你认为你面临最大的困难是什么?
(2)小组汇报:
a.不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。
b.面临的困难:如何曲线变直线。
2.操作实验,分析问题
(1)学生动手实验、剪拼图形。(允许学生根据发现的规律结合课本内容分组合作完成圆面积计算公式的推导)。
(2)交流汇报。
①学生汇报剪拼过程,同时教师贴示。
②观察思考(教师有意选取一组剪拼成长方形的来交流)
a.拼成的图形像什么图形?为什么说它像长方形而不是长方形?
b.谁有办法把边变得更直些?把这个近似长方形变得更近似长方形?
(教师媒体演示)
c.把圆分成64等分后,拼接后的图形它的边会怎么样?图形会怎么样?
d.生闭眼想象:如果把圆面等分成128份,256份……一直这样下去分成很多很多份,剪拼后的图形是什么情形?
3.推导公式,解决问题
(1)观察讨论
当圆转化成近似长方形时,你们发现它们之间有什么联系?
(2)学生填实验报告。
(3)学生交流汇报推导过程。
(4)观看课件演示过程,并请同桌两位同学互说一次。
三、公式应用
1.简介千古绝技:中国古代数学家的割圆术。
公元3世纪我国数学家刘徽推算出圆周率时采用的"割圆术"。这种以直代曲,用有限逼近无限的数学思想就是我国古代数学家的首创……
2.解答引入时花坛占地面积(若设计一个自动旋转喷灌装置应装在哪儿?)。
3.根据下面所给的条件,求圆的面积。
(1)直径10厘米(2)周长12。56
(生独立解答,思考(2)面积和周长相等吗?做了这些题目你有什么体会?)
四、课堂总结
1.这节课你学会了什么?
2.这节课你有什么感受?
五、课外拓展
1.媒体出示:学校现有一块长方形土地(长50米、宽25米),打算在上面建造一个圆形体育馆,最大可以占地多少平方米?
2.已知正方形的面积是25平方厘米,求圆的面积。如图:
3.一支森林考察队发现了一颗要3人才能合围的大树,现要算出这棵大树的横截面(圆形)面积,怎么办?(探讨哪一种测量法合理简洁)
板书设计
圆的面积
圆所占平面的大小叫圆的面积。
长方形的面积 = 长 × 宽
圆的面积 = πr × r = πr2
(周长的一半)
剪拼
要学的图形 已学的图形
转化
圆的面积教学设计4
一、激趣导入
1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。
2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的`面积
3、看到这个课题,你想知道些什么?
学习目标:
(1)了解什么是圆的面积;
(2)了解与哪些因素有关;
(3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。
二、实践导学
(一)认识圆的面积
1、什么叫圆的面积。
2、小组讨论
3、圆的大小主要与哪些因素有关?
(1)半径;
(2)直径;
(3)周长。
(二)回忆平行四边形面积公式推导过程
1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)
2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?
3、小组讨论
(三)操作探究
1、转化圆形推导公式
(1)让学生拿出卡纸(1),观察卡纸(1)上的圆被等分成多少分,圆被转化成什么图形?
(2)让学生拿出卡纸(2),观察卡纸(2)上的圆被等分成多少分,圆又被转化成什么图形?
(3)教师课件展示圆被平均分成16等份后转化的图形。
(4)观察比较,你有什么发现?
2、引导学生观察比较,推导圆面积计算公式。
(1)将圆通过剪拼,可以转化成已经学过的什么图形?
(2)新的图形与原来的圆有什么联系?
(3)试推导圆的面积公式。(课件展示)
长方形的面积=长×宽
圆的面积=c÷2×r=2πr÷2×r=πr2
s=πr2
三、练习巩固
1、运用公式学习例1、
学生试做,说根据,总结强调。
2、完成基本练习(做一做)
四、拓展提高
1、解决“小羊吃草”问题
圆的面积教学设计5
教学目标:
知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。
情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。
教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。
教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。
教学过程:
一、创设情境,提出问题。
1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?
2. 这个圆形的面积指的是哪部分呢?
3. 今天这节课我们就来学习圆的面积。(板书:圆的.面积)
二、探究思考,解决问题。
1.请大家估计半径为5米的圆面积大约是多大?
2.用数方格的方法求圆面积大小
①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
3.在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。
三、探索规律
1.大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?
2.那么圆形的面积可由什么图形面积得来呢?
3.拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?
4.同学们操作,教师巡视.
5..大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?
6.你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。
①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
7用字母怎么表示圆面积公式呢?
四、应用圆面积公式
1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。
2.第18页第1题
学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。
3. 第18页第2题
让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。
板书设计:
圆的面积
平行四边形面积=底×高,
圆形面积公式=圆周长的1/2×半径
圆形面积公式=圆周率圆×半径2
圆的面积教学设计6
教材分析
教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。
2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标
1.了解圆的面积的'含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点
教学重点: 圆的面积公式的推导及应用公式计算
教学难点:探究圆的面积公式的推导过程
圆的面积教学设计7
教学内容:
冀教版六年级上册第四单元
教学目标:
1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。
2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。
3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。
4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。
教学重点:
在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。
教学难点:
能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。
教学流程:
一、炫我两分钟
大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的.伟大成就是关于圆周率的计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即
同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。
出示口算题目。
随机评价。
相信我们都是有智慧有思想的人,我要为你们点赞(动作)。
二、组内交流,完善梳理
教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。
【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】
三、小组合作交流。
组内交流尝试小研究。
出示小组合作交流建议:
1、组长组织本组成员有序进行交流。
2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。
3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。
4、再次确认发言顺序,准备全班交流。
【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】
四、班级交流,提升梳理
1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。
2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。
【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】
3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。
师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。
【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】
五、应用拓展
结合练习做相应题目,巩固易错易混知识。
(一)基础题
1、判断下面各题是否正确,对的打“√”,错的打“×”。
(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )
(2)半径为2厘米的圆的周长和面积相等。 ( )
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )
2、一个圆的周长是25、12米,它的面积是多少?
3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?
(二)拓展提高
1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?
2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?
3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?
【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】
六、个人整理
经过本课时的学习,你有哪些收获呢?
【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】
圆的面积教学设计8
一、教材分析
《圆的面积》,是北师大版六年制小学数学第十一册第一单元中的内容,这是一节推导与计算相结合来研究几何形体的教学内容,它是在学生学习了平面图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容,为以后学习圆柱、圆锥等知识作了铺垫。
二、学情分析
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题,因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
三、教学目标(课件)
(1)理解圆的面积含义,推导出圆面积计算的公式,并会用公式计算圆的面积。
(2)进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。
(3)注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。
基于以上的教学目标确定教学重点:掌握圆面积的计算公式;弄清拼成的图形各部分与原来圆的关系。
教学难点:是圆面积计算公式的推导和极限思想的渗透;
四、学情分析
为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:
1、知识呈现生活化。以草坪中间的自动喷灌龙头为草坪喷水为主线,让学生提出问题让生活数学这一条主线贯穿于课的始终。
2、学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。
3、学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。
4、学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
五、教学过程
本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究,构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。
(一)创设情境,激趣引入
数学来源于生活,有趣的生活情境,能激发学生好奇心和强烈的.求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了自身,又大胆而自然地提出猜想。在课的一开始,我设计了“自动喷水头浇灌草地得出一个半径是5米的圆”这一情境(课件),让学生在情境中寻找有用的数学信息并提出数学问题(课件),在思考“喷水头转动一周可以浇灌多大面积”的过程中,让学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,并引发研究圆的面积的兴趣,为下一环节做好铺垫。
(二)引导探究,构建模型
第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想,明确方向————化曲为直,扫清障碍————实验探究,推导公式————展示成果,体验成功————首尾呼应,巩固新知五大步进行:
第一步:启发猜想,明确方向。
鼓励学生进行合理的猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想(课件):“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,或许能想到将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。
第二步:化曲为直,扫清障碍。
首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段(课件)。这一规律的发现,不仅向学生渗透了极限的思想,更重要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。
第三步:实验探究,推导公式。
首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。
第四步:展示成果,体验成功。
在学生小组讨论后,引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似的平行四边形或长方形或三角形或梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。
(课件)首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导(课件),得出圆面积等于周长的一半乘半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。
第五步:首尾呼应,巩固新知
在学生获得圆的面积计算公式后,“龙头最多能喷灌多大草坪呢”?求出它的面积。从而达到了对新知的巩固。
四、分层训练,拓展思维
为了深化探究成果,在第三环节:分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。
第一层:基本性练习
1、求下面各个圆的面积。(课件出示)
(1)半径为3分米;
(2)直径为10米。
(3)周长为13厘米。
第二层:综合性练习
2、一张圆桌的桌面直径是1。5米,油漆师傅要在圆桌面的边上贴一圈铝合金,并在正面漆上油漆。请问,油漆师傅要买多长的铝合金,油漆的面积有多大?
第三层:发展性练习
3、王大伯想用31。4米长的铁丝在后院围一个菜园,要使面积大一些,该围成正方形好还是圆形好呢?你能当回小参谋吗?
4、一块正方形草坪,边长10米.草坪中间的自动喷灌龙头的射程是5米。
(1)这个龙头最多可喷灌多大面积的草坪?
(2)喷灌后至少可剩下的面积有多大?
六、评价和反思
这节课紧紧抓住了教学重点,通过多媒体课件的演示,以及学生的动手操作,把一个圆通过分、剪、拼等过程,转化为一个近似的长方形,从中发现圆和拼成的长方形的联系,这种从多角度思考的教学理念,既沟通了新旧知识的联系,又激发了学生的求知欲,并培养了学生探索问题的能力。
圆的面积教学设计9
一、 教学内容
人教版数学六年级上册
二、教材分析
在平面图形的学习中圆安排在最后一个,是在学习面积的认识及长方形、正方形、平行四边形、三角形、梯形的基础之上安排的。
本单元安排了圆的认识、圆的周长和圆的面积。《圆的面积》是本单元的一个教学难点,圆是由曲线围成的图形,教材中介绍的把圆通过等分拼成近似的长方形,分的份数越多就越接近长方形,这里体现了极限的思想。另一种思路是在圆内画正内接多边形,使多边形的面积越来越接近圆,这也就是刘徽的割圆术,体现了极限的思想。在这个化圆为方的过程中,加强了转化思想的渗透。与此同时,让学生感受到中国古代的优秀数学成就,增强学生们的民族自豪感。
三、学情分析
本课是在学生掌握了面积的含义及长方形等多边形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的。通过课前调查,有20%的同学知道圆的面积公式,但只知道公式却不知道怎么来的,有10%的同学认为知道,但写出的公式不正确。针对以上情况,我把化圆为方定为本课的教学难点,把公式的推导作为重点,学生在自主探究与合作交流发现圆的面积公式。
四、教学目标
1、理解圆的面积的意义及公式的推导过程。
2、在自主探究中体验转化思想和极限思想。
3、培养学生独立思考、合作交流的学习方式,学习刘徽、祖冲之勇于探索、严谨治学的`科学态度,激发学生对中国传统文化的自豪感。
五、教学重点
理解圆的面积公式的推导过程。
六、教学难点
化圆为方体会极限思想。
七、教学准备
PPT 圆片剪刀
八、教学流程
九、教学过程
(一)创设情境,引出新知
课件:小马吃到青草的最大面积是多少?要解决这个问题就是求圆的面积。这节课咱们就来研究圆的面积,揭示课题。
(设计意图:通过本环节帮助学生结合生活实际理解圆的面积的概念,明确本节课的学习任务。)
(二)回顾复习,总结方法
1、我们在推导其他图形的面积公式时是怎样研究的呢?复习长方形、平行四边形、三角形、梯形的面积公式推导。
2、前面的学习对研究圆的面积有什么启发吗?
小结:你能把前面学习的方法用到圆面积的研究中,这说明你很会学习。
(设计意图:通过复习找到学生的原有认知,运用正迁移寻找到研究圆面积的方法。)
(三)尝试转化,推导公式
1、圆能转化成我们学过的什么图形呢?请你大胆猜测一下。
2、请你先想一想圆能转化成什么图形,然后再动手剪。
活动要求:
(1)圆能转化成我们学过的什么图形?
(2)圆和转化后的图形有什么联系?
(3)通过转化后的图型你能推导出圆的面积公式啊?
提示:先独立思考,然后再和同桌讨论一下。
预设一:圆内正多边形
1、圆内只剩正方形
(1)指名说想法
(2)对于他的想法你有什么想法吗?
2、圆内画正方形
(1)出示:把圆转化成正方形和4个小部分
你看前面同学把这4个小部分去掉了,你为什么粘在这了呢?
(2)方法同上,但是在拼成的椭圆形上画正方形。
请第二个同学说一说。
(3)圆内正六边形
指名说想法。
比较这正四边形和正六边形两种方法,你发现了什么?
想象一下,如果继续分下去,正十二边形、正二十四边形会怎样呢?
(4)介绍刘徽的割圆术和祖冲之。
预设二、沿半经剪
1、拼成长方形或平行四边形
(1)展示学生作品
指名说想法。(分的份数少的)
比较沿半径分的几种方法:观察一下这几种方法,你有什么想法呢?
(2)渗透极限思想
如果继续顺着大家的思路往下分的话,想象一下:16份,32份呢?。
出示课件:电脑演示由8等分到32等分
小结:我们这几位同学沿着半径把圆剪开,因为圆的半径有无数条且相等,所以圆分的份数就有若干份,分的越多拼的图形就越接近长方形。
(3)圆和转化后的图形有什么联系呢,你能独立推导出圆的面积公式。
预设三、展示其他图形
指名说想法
1、转化成梯形、三角形
2、推到面积公式
小结:你们的想法独具匠心,思维与众不同。刚才我们努力的把圆转化成其他图形,虽然方法不同,但是殊途同归。咱们同学可真了不起,自己推导出了圆的面积公式。
(设计意图:本环节为学生提供独立探究的空间,调动多种感官使学生在动手剪、开口说的过程,体会转化的思想。通过比较、课件演示,渗透极限的思想。)
(四)应用公式,解决问题
1、当这个圆的半径是1米时,小马吃草的面积是多少?
2、当这个圆的直径是2米时,小马吃草的面积是多少?
3、当这个圆的周长是6.28米时,小马吃草的面积是多少?
十、板书设计:
圆的面积
转化图形 建立联系推导公式
平行四边形的面积=长× 宽
圆的面积 =周长的一半×半径
S =∏r× r
= ∏r2
圆的面积教学设计10
教学内容:
义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。
教学目标:
知识与技能:
让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。
过程与方法:
(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。
(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。
情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
教学重点:
推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。
教学难点:
引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
教具准备:
多媒体课件,圆片等。
教学方法:
自主探究法
教学过程:
一.以旧引新、导入新课
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下三角形的面积公式是怎样推导的?
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)
5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的`面积)
二、动手实践、探索新知
1、补充感知、理解意义
(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?
(2)同学们再用手指一指自己带来的圆的面积。
(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。
2、比较猜测、探明方向
(1)提问:猜猜圆面积的大小与什么有关?
(2)下面我们来动手验证一下是否与半径有关:
①你们想通过什么方法来推导圆的面积计算公式?
②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)
(3)活动要求:折一折手中的圆片能折出什么图形?
(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:
①圆和(近似的)长方形有什么关系?(形状变,面积相等)
②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)
(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。
把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。
小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。
圆的面积教学设计11
学情分析:
《圆的面积》是人教版小学数学六年级上册的内容,而苏教版则安排为五年级下册的内容,对于高学段的学生来说,在学习本课时之前,已经积累了大量关于圆的表象认识。在学习圆的面积之前,学生已经掌握其他平面图形的计算方法。这节课的目的就是让学生从平行四边形、长方形的面积计算方法和圆的面积的关系,总结出圆面积计算方法。此时这个阶段的小学生的认知特点是复杂的。竞争意识增强,敬佩优秀同学;接触自然、了解社会;加强预习,学会总结。认知也有所发展,在注意力方面,学生的有意注意逐步发展并占主导地位,注意的集中性、稳定性、注意的广度、注意的分配、转移等方面都较低年级学生有不同程度的发展。在记忆方面,有意记忆逐步发展并占主导地位,抽象记忆有所发展,但具体形象记忆的作用仍非常明显。在思维方面,学生逐步学会分出概念中本质与非本质,主要与次要的内容,学会掌握初步的科学定义,学会独立进行逻辑论证,但他们的思维活动仍然具有很大成分的具体形象色彩。在想象方面,学生想象的有意性迅速增长并逐渐符合客观现实,同时创造性成分日益增多。初入六年级的小学生是小学学习的最高、最后阶段。随着对小学教育的不断适应,这一时期的学生无论是在生理,还是心理上都比初入学时的儿童稳定,并在此基础上不断发展。刚入六年级的小学生的心理健康教育和学习目标归纳起来为:增强学习技能训练,培养良好的智力品质;引导学生树立学习苦乐观,激发学习的兴趣、求知欲望和勤奋学习的精神;培养正确的竞争意识;鼓励参与社会实践活动,提高做事情的坚持性;建立进取的人生态度,促进自我意识发展。
教学目标:
1.了解圆的面积的含义,经历圆面积计算公式的推导过程【转换思想】,掌握圆面积的计算公式
2.理解圆的面积的意义,掌握圆面积的计算公式,沟通圆与其他图形之间的联系,培养观察,操作,分析,概括的能力以及逻辑思维能力。
3.培养认真观察,深入思考的良好思维品质,锻炼自己面对困难勇于克服,锲而不舍的精神。
教学重难点:
1,能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单的实际的问题
2,圆面积的计算以及公式的推导
案例描述:
一、带入情境,引出问题
1,出示课本中的草坪喷水插图,并提出问题,你能从中发现什么数学知识
2,并进一步提出这个圆的面积是指这个图形的哪个部分
3,最后开题~~~今天这节课我们就来学习圆的面积{板书;圆的面积}
二、引入数学历史,增强学生浓厚的学习兴趣
圆形,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的'陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。
约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
三、引入旧课,导入新课
【引入】小学生们,前面我们学习过了正方形,长方形,甚至梯形面积等平面图形的面积的计算方法,那我们是不是可以通过动手把圆先切割再拼接成一个我们学过的图形。那么圆的面积不就是我们之前学过的图形的面积嘛。那我们准备工具看一下怎么样才能将圆拼接成一个我们所了解的图形。
1,课件展示:请看大屏幕,分成16份的圆,把它们可以拼接近似成平行四边形,分成32等份,也可以拼成近似为平行四边形,而64等份呢,竟然可以近似为长方形,那你可以发现什么?【分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形】
2,思考提问并总结圆面积计算公式的语言描述
长方形的长相当于圆周长的一半,而长方形的宽相当于圆的半径
3,提出圆面积的计算公式的问题,提问总结s=πr2
4,利用公式,导入数学历史的有关文化,丰富学生的学习过程!!!!!!
会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。如今有了电子计算机,圆周率已经算到了小数点后五万亿位小数了。
四,熟记公式,并投入实践应用之中
1,口答,根据半径计算出圆的面积
R=1,R=2,R=3
2,练一练
r=8,s=;c=31,4,s=
r=4,s=;d=16,s=
3,那现在请大家回到本节课开始的时候,用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田
4,第18页第2题
让学生独立解答,集体修正的时候要求学生说出每一步计算过程和依据
5,第18页第2题
让学生理解题意之后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是一米的圆,让学生看看,并试着站一站
6,课下思考
用一根长3米的绳子,把一只羊拴在树杆上,羊的活动范围是多少?
五,学生自我评价
【小结】通过本节课的学习,你有什么收获和感悟?
本节课,让我们通过计算,分析结果,总结圆面积的计算公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
六,【作业】随堂练习课后作业
圆的面积教学设计12
教学内容:
义务教育课程标准实验教科书第十一册P67-68
教学目标:
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:
掌握圆的面积的计算公式,能够正确地计算圆的面积。 教学难点:理解圆的面积计算公式的推导。
学具准备:
相应课件;圆的面积演示教具
教学过程:
一、创设情境,导入新课
出示教材67页的情境图。
师:同学们,请看上面的这幅图,从图中你发现了什么信息?(学生观察思考)
生1:我发现图上有5个工人在铺草坪。
生2:我发现花坛是个圆形。
师:哦,是个圆形。还有没有?请仔细观察。
生:我发现一个工人叔叔提出了一个问题。
师:这个问题是什么?
生:这个工人叔叔说“这个圆形草坪的占地面积是多少平方米?”
师:你们能帮他解决这个问题吗?
师:求圆形草坪的占地面积也就是求圆的什么?
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:从主题图入手,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、游戏激趣,理解圆面积的概念
师:同学们,我们先来玩个小小游戏,大家说好不好?游戏规则是这样的:选出一名男同学和一名女同学,给圆涂上颜色,比一比,谁涂得快。(涂完后,师:同学们,你们有什么话要说吗?)
生:这个游戏不公平?男同学涂的圆大,女同学涂的圆小。 师:圆所占平面的大小叫做圆的面积
(板书:圆所占平面的大小叫做圆的面积)
师:现在大家知道男同学为什么涂得慢了吗?(引导学生说出男同学所涂的圆的面积大)
[设计意图:通过涂色让学生在充分直观感知圆面积的基础上,理解圆面积的含义。]
三、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗? 我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。 师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的`过程中它们的 发生了变化,但是它们的 不变?
②转化后长方形的长相当于圆的 ,宽相当于圆的 ? ③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为??所以??”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
4、公式运用,巩固新知。
师:现在大家懂得计算圆的面积了吗?我们来试试看。
四、应用公式,解决生活中的实际问题
师:接下来我们运用圆的面积计算公式来解决生活中的实际问题。
师:(出示教材第67页的情境图)这是刚才课前发现的问题。 师:这道题你们能自己解决吗?(让学生尝试自己解决问题,并指名板演。再让学生说说是怎样想的,然后教师小结:求圆的面积必须知道什么条件?) [设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
五、练习反馈,扩展提高
1、一个圆形茶几桌面的直径是1m ,它的面积是多少平方厘米?
2、小刚家门前有一棵树,他很想知道这棵树的横截面的面积是多少,但是他又不想锯掉,你们有什么办法帮他吗?
六、全课总结
同学们,这节课我们学习了哪些知识?你有什么收获?
七、板书设计
圆的面积
圆所占平面的大小叫做圆的面积
长方形面积= 长×宽
= 半径
S = πr ×r
=πr2
圆的面积教学设计13
教学目标:
1.知识目标:经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2.能力目标:能正确运用圆的面积计算公式计算圆的面积
3. 情感目标:体会转化的数学思想方法,初步感受极限的思想。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、复习导入
1.提问:长方形的面积是什么?圆的面积是什么?
复习学过的图形面积公式,圆的面积该怎样计算?
3.引入:今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
二、探究新知
1.教学例7。
(1)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?
(3)实验验证:
出示例7第一幅图。思考:
①你准备怎样数?与同学交流。
②图中正方形的面积和圆的半径有什么关系?
估计一下圆的面积大约是正方形面积的几倍。
(4)指导完成第一幅图的计算和填空。
同桌合作,按照同样的方法进行计算并填表
2.交流归纳:观察上面的表格,你有什么发现?
小结:圆的面积是半径平方的3倍多一些。
3.教学例8。
(1)谈话:以前我们是怎样推导出平行四边形的面积呢?那么圆能不能转化成学过的图形?
(2)操作体验:把117页上半部分剪下来,按16等份剪开,再拼一拼,看看能什么图形。
(3)提问:拼成的图形像什么图形?(拼成了一个近似的平行四边形。)
(4)初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
教师演示后进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什图形?(长方形)
(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽
是圆的半径:长方形的长是圆周长的一半。
(7)追问:如果圆的`半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,得出圆的面积公式。(教师板书)
(9)追问:知道圆的什么条件,就可以根据圆的面积公式计算圆的面积了?
(10)完成练一练。
4.教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转喷水器?
(2)想象一下自动喷水器旋转一周后喷灌的地方是什么图形,喷水的最远的距离是什么意思。
(3)学生独立完成计算。
(4)指导算术方法和代入法两种方法的注意事项。
三、课堂小结
通过今天的学习,你有什么收获?
四、布置作业
完成练习十五第1、3、4题。
圆的面积教学设计14
一、教材分析:
圆是一种曲线图形,和以前学的直线图形在性质上有很大的不同,但是在研究方法上联系又很紧密。因此,认识圆以及圆的周长计算都注重了引导学生应用转化的,找到问题的突破口。由此,在本节课中,仍然渗透转化的即“化圆为方”的,把圆的面积转化为长方形的面积,通过计算长方形的面积来推导圆的面积,得出圆的面积计算公式。在推导圆的面积计算公式时,首先让学生回顾以前长方形、正方形、三角形、平行四边形的面积推导公式,它们的共同特点都是运用转化的方法,让学生自主探究。教材中呈现的几种探究方法,非常注重发挥学生的创新思维,鼓励学生大胆地进行探究,把探究如何将圆的面积转化为以前学过的图形面积作为本课的重点和难点,推导出圆的面积计算公式。
二、教学目标及重、难点:
教学目标:
1、使学生理解和掌握圆面积的计算公式,沟通圆与其他图形之间的联系,培养学生观察、操作、分析、概括的能力以及逻辑思维能力。
2、引导学生学会利用已有的知识,运用数学方法,推导出圆面积计算公式;渗透极限、转化、化圆为方等数学方法。
3、培养学生认真观察、深入思考的良好思维品质,锻炼学生面对困难勇于克服、锲而不舍的。
教学重点:掌握圆面积的计算公式。
教学难点:把圆转化为什么平面图形以及圆面积的计算公式的推导。
三、学生知识储备分析:
学生在学习直线图形的面积计算,如:平行四边形、三角形、梯形的面积计算时都是利用了转化的数学,把未学过的.图形的面积转化为已学过的图形的面积来解决的。出示大小不同的圆,让学生猜一猜圆的面积的大小和什么有关,学生很容易地得出和半径有关系。然后让学生回顾平行四边形、三角形、梯形的面积计算公式的推导过程,引导学生利用转化的方法将圆转化为学过的图形,从而推导出圆面积的计算公式。
四、 教学设想:
圆面积这节课是在学生学习了圆的认识和平行四边形、三角形、梯形的面积的基础上教学的。圆的面积对于对于小学阶段的学生可以说是一次思维的飞跃。在过去所学的平面图形的面积中运用的转化是显性的,如将平行四边形转化为长方形,将三角形转化为平行四边形或长方形,等等。而圆的面积对于学生来说运用转化的不是难点,但是由于圆是曲线图形,使得学生不知该如何转化为熟悉的直线图形成为了本课的重点和难点。因此,本节课我采用“探究法”,给予学生充分的时间与空间,在探究过程中讨论、操作、观察、比较,让学生经历“猜想——设想——操作——推导”的过程。其中的操作是放手让学生去尝试剪拼,学生可能失败很多,但即使失败了也不要紧,在巡视的过程中要不断地鼓励学生在失败中经验教训,寻求不同的方法,通往成功之路。在这个过程中重要的是让学生掌握方法、学会学习,这才是终身受益的。在学生的失败中,激励、引导学生找到正确的剪拼方法拼成长方形,可能会有学生拼成其他图形来推导出圆的面积公式。这样的教学主要靠学生自身积极、主动地去探求知识,体现了学生在学习中的主体地位,让学生体会到了数学探究的魅力,体验到成功的快乐,从而激发学生学习数学的积极性。
在充分尊重学生思维发展的过程中,我还要适时地加以引导、点拨,在学生动手操作已经无法再完成时,要用动态演示来弥补学生操作与想象的不足,帮助学生进一步感知平均分的份数越多,剪拼成的图形越来越像长方形,并围绕“怎样更像”进行了一次又一次的追问,让学生充分体验“极限”。在学生多次地折、剪、拼活动中发现把圆的面积转化为求长方形的面积后,让学生思考:什么变了,什么没变。引导学生说出:面积没变,形状变了。再让学生观察、思考长方形的长、宽分别相当于圆的什么?引导学生得出长方形的长相当于圆周长的一半,长方形的宽相当于圆的半径,长方形的面积=长×宽,所以圆的面积=圆周长的一半×半径=πr×r=πr2。
五、练习题的设计:
因为圆的面积=πr2 ,所以要计算圆的面积必须知道半径。但是如果条件中知道直径或者周长,怎样求圆的面积呢。让学生明白首先要求出圆的半径再利用圆面积计算公式进行计算。
圆的面积教学设计15
教学目标
1、通过观察、操作、分析和讨论,推导出圆的面积计算公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重难点
教学重点:源面积计算公式的退到。
教学难点:通过观察、操作、分析和讨论,推导出圆的面积计算公式。
教学过程
一、情景导入
1、师:看一看图中这幅画,工人叔叔提出了一个什么问题?
所有的草坪铺满将是一个什么形状?
那么求这个圆形草坪的占地面积就是求什么了?
引导学生说出求这个圆形草坪的占地面积就是求圆的面积
这节课我们就来研究圆的面积。
板书:圆的面积
师:看着这个课题你想知道什么?你有什么想法?想从这节课中学到什么?
二、导入新课
1、师生总结板书?圆的面积与什么有关?
?圆的面积怎么求?
?圆的面积有没有计算公式?
2、师:看着老师手中两个不同大小的圆,是什么决定着他们的大小,那么可想而知,圆的面积大小与什么有关系?
引导学生猜想说出圆的面积与半径有关
板书:圆的面积与半径r有关
师:到底是不是这样的了,接下来我们就来进行深入的探究。探究之前,请同学们回忆一下平行四边形的面积公式是什么?我们是怎样推导出他的面积公式的?对于三角形和平行四边形也是运用同样的方法推导出他们的公式的
师:总的来说,先把他们剪切,再拼接,最后转化成熟悉的图形。
板书:拼切——转化——化未知为已知
师:那么你们可以把这种转化的思想运用于求圆的'面积上吗?
生:可以(不可以)
师:那你想怎么切,怎么拼,把圆转化成什么图形,自己动手做一做。有想法的请举手告诉老师。
师:由于操作的局限性,我把大家拼接的效果用电脑展示出来。
首先,首先先把圆等分成8份,再拼接在一起,它大致像一个什么图形。
(平行四边形)
第二次把它等分成16份,在拼接在一起,它更想什么了?接着把她等分成32份,拼接起来,你发现了什么规律?
师:总结如果分的份数越多,每一小份就会越小,拼成的图形就会越接近长方形。
板书:近似
三、推导圆的公式
师:我们已经成功地花园为方,看看数学方式就是这么神奇,但是圆的面积公式还是不知道。请同学们看着你们手中拼接好的圆以同桌为组思考这几个问题:?圆的面积和这个近似长方形的面积有什么关系?
拼成的近似长方形的长和宽与圆的周长、半径有什么关系?
你能以计算长方形的面积推导出计算圆的面积公式吗,尝试用“因为……根据……所以……”类似这样的关联词,把你的想法在小组中发展出来。板书:因为圆形的面积=长方形的面积=长×宽=1/2周长×半径
所以圆的面积=R×RS=R
这就我们今天要学习的圆的面积公式,从公示中得出,圆的面积大小和什么关系密切,验证了刚才的猜想是正确的,所以在学知识的时候,不仅要大胆的猜测,还要用实践去验证猜测。
练习题
1、求出下列圆的面积:
2、圆形草坪的直径是20米,它的面积是多少平方米?
3、练习十
六、3小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?
四、总结
通过刚刚的练习题,我们知道了哪些条件就可以求出圆的面积了?通过这节课的学习,咱们都学会了哪些知识?
【圆的面积教学设计】相关文章:
《圆的面积》的教学设计01-11
圆的面积的教学设计09-29
圆的面积教学设计【精选】09-27
圆的面积教学设计08-17
《圆的面积》教学设计05-19
圆的面积教学设计12-02
圆的面积教学设计及反思02-12
圆的面积教学设计优秀12-27
《圆的面积》教学设计精品10-10
[必备]圆的面积教学设计11-16
