- 相关推荐
大学数学学习心得(通用20篇)
当我们对人生或者事物有了新的思考时,将其记录在心得体会里,让自己铭记于心,这样能够给人努力向前的动力。应该怎么写才合适呢?以下是小编为大家收集的大学数学学习心得(通用20篇),仅供参考,大家一起来看看吧。

大学数学学习心得 1
一直以来都觉得数学是门无用之学。给我的感觉就是好晕,好复杂!选修了大学数学这门课,网上也查阅了一些有趣的数学题目,突然间觉得我们的生活中数学无处不在。与我们的学习,生活息息相关。
不得不说,数学是十分有趣的。可以说,这是死中带活的智力游戏。数学有它一定的规律性,就象自然规律一样,你永远也无法改变。但就是这样,它就越困难,越有挑战性。
数学无边无际深奥,更是能让人着迷的遨游在学海的快乐中。数学是很深奥,但它也不是我们可望不可及的。它更拥有自己的独特意义。学习数学的意义为了更好的生活,初中数学吧;为了进入工科领域工作,高中数学吧;为了谋求数学专业领域的发展,大学数学吧数学是什么是什么什么学科,公认的!我觉得是一们艺术,就象有黄金分割才美!几何图形如此精致!规律循环何等奇妙!
在网上看到一个很有趣的题目:有一个刚从大学毕业的年轻人去找工作。为了能够胜任这第一份工作,他也自作聪明地象老板提出了一个特殊的要求。“我刚进入社会,现在只是想好锻炼自己,所以你就不必付我太多钱。我先干7天。第一天,你付我5角钱;第二天就付我前一天的平方倍工钱,之后依次类推。”老板一口答应了。可到了最后一天领工资的时候,这个年轻人却只领到了寥寥几块钱。年轻人很不解,老板却说自己已经很不错了,多付了他好几百天的工钱。你知道为什么吗?起初看到我是一头雾水,后面就明白了:0.5元的平方是0.25元,0.25元的平方是0.625元。也就是说这么一直算下去,年轻人的工钱是一天比一天少的。自然,赚几元钱就得好多天了。但是如果年轻人第一天要的工钱大于1元钱,那么7天的'工钱可就多得多了。我们不得不说这个老板是聪明的,员工的马虎的。这么简单的知识也会运用错误,导致自己吃了哑巴亏还没办法挽回。这么一个简单的例子事实上就已经说明数学就在我们的身边。
其实数学就是在我们的身边,之所以没有发现它的存在,我想有时候可能还是因为它的存在及运用实在太多。
数学讲究的是逻辑和准确的判断。在一般人看来,数学又是一门枯燥无味的学科,因而很多人视其为求学路上的拦路虎,可以说这是由于我们的数学教科书讲述的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学方法和原理的理解认识的深化。数学不是迷宫,它更多时候是象人生曲折的路:坎坷越多,困难越多,那么之后的收获就一定越大!
大学数学学习心得 2
全面复习,把书读薄
从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏。
全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到。这就是全面复习的含义。
突出重点,精益求精
在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。"猜题"的`人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,"猜题"便行不通了。我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解。即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式。由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广。比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精。
基本训练反复进行
学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到下确答案。这就是我们在前言中提到的,在20分钟内完成10道客观题。其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,"熟能生巧",基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错。
高等数学是高等工科院校的重要基础课程。但对于如何学好这门课程。有些同学却是百展莫愁,头痛不已。而高数的学习、掌握和运用是后序课程的基础和保障,学不好高数,对于三大力学,还有结构设计原理来说,是不可能学好的。
数学是一门深奥而又有兴趣的课程。如果增加对这门课程的自信心,不要畏惧它。你会很容易接受这门课,你也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。
多想多做是学好数学的关键。多想是根本,多做是基础,多做是为了熟能生巧,是为了真正应用,是学好数学的前提条件。而多想充分发挥联想是学好数学的根本条件。学数学要知道举一反三,当老师讲到某一点或某一类型的问题时,你的思路就应拓展开来,不应仅仅局限于这一点或这一类型的问题,而应该把前面所学的知识点结合起来,想想如果你碰到这种题目你会怎么办?假如以后碰到这种类型的题目你又会怎么样?其实数学是个活学问也是个死学问。正所谓万变不离其宗。所有的题目都是所学过的公式和方法稍微转变一下过来的。对于像我这样自学的人来说,更需要多做、多想。这样才能加深理解,运用自如。
现在懂了,以后又不会做了。数学必须要做题,对于数学的题目要学会分析,不要忽视每一个已知条件,发现一个已知条件要联想到相关的公式,而如何能充分的灵活的运用公式。这就是多做能产生的效果。
学好数学,学懂数学,主要的是“通”,而如何能“通”,这就是日积月累的多想多做,只要您通过勤学苦练,坚持不懈的努力,您一定会体会到高等数学没什么可怕的。
大学数学学习心得 3
对于许多文科学生来说,数学也许是一个令人有些畏惧的名词,有些同学也许就是因为数学学不好或者不太喜欢数学,而选择了学文科的,高等数学学习方法与经验。但是,对于任何一个文科生来说,数学都是非常重要的,有人把数学比做是文科生的生命线,有人说数学和英语在很大程度上决定了一名文科生的层次,这都是有一定道理的。因此,一定要尽自己最大的努力来学好数学.
在我看来,数学其实是一门非常奇妙而有趣的学问。只要你有一双善于发现、敢于发现的眼睛,你就能够找到数学的魅力所在,就会对它产生兴趣。而兴趣是最好的老师,如果你既对数学感兴趣,又下定决心努力学好数学,那又怎么会学不好呢?
课本对于数学来说,是很重要的。我们做的试题,有很多都是课本例题或其“变种”只要花上一点点时间把课本好好看看,要拿下这些题便易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题更不可能做得好。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求思维清晰明了,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。
以下是我个人觉得在数学学习过程中非常必要的几点:
1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解。概念、定理、公式要在理解的基础上记忆。我的经验是,每新学一个定理,便尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。
4、标出重点。平常看题看课本的时候,碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然.
最后想谈谈数学这一科目的应试技巧。概括说来,就是"先易后难"。我们常常有这样的体会,头脑清醒的时候,本来一些较难的题也会轻易做出来;相反,头脑混沌的时候,一些简单的题也会浪费很多时间。考试时,遇到拦路虎是不可避免的,停下来有两种可能,一是费了九牛二虎之力终于做出来,但由于耗费了大量时间,接下来或者不够时间做完题目,或者担心时间不够,内心焦急,一时连简单的题也做不出来了;二是还是没有做出来,结果不仅浪费了时间,而且连后面的题也没做完。而先易后难,则是愈做愈有信心,头脑始终保持清醒的状态,或者最后把难题做出,或者至少保证了会做的题不丢分。
2002年10月自考下来,高数工本只考了75分,我望着一尺高的草稿纸,回想近三个月来的日日夜夜,不禁“有所叹焉!”遂将一些心得,形成文字,没有整理,希望有兴趣一阅的朋友批评、交流。
2002年8月,我决心自考计算机应用专业,老婆不反对、不支持、不打击、只出钱。当月报考了高数工本和C++。我选择了难度,选择一个希望。自考者多数同时还有工作,我是一名警察,不仅要上班,还要加夜班,没有固定的学习时间,也不能听课,也不可能有时间去听课。自1993年7月高考失利已来,离别校园已九年有余。重新捧起数学,且为占10学分的高数工本,难度之大、时间之促,与高考不相上下。
经验:做完一切书上习题、不会做也要把答案抄一遍。
要不然,如何用得完那一尺高的草稿纸!我把大量的时间用在做题上,不值班的时候,常常演算至深夜、至次日凌晨。遇到不会做的题,就把参考答案看懂,再演算一遍。
教训之一:只做习题、未做例题
其实,我的第一经验是最重的败笔!临近考试时,我开始作历年试题,做下来才顿悟。第一是例题、第二是例题、第三还是例题!大家对本次自考最后一题有印象吧?是例题!历年大题,均有例题或其“变种”!事实上我们教材中的“总习题”有一定难度,而且每题花时不少!我们的自考,一般不会考那么难的。而我平时花时最多的是“习题、自测题、总习题”,为完成之,不得不减少了看书和例题的时间。完全的事倍功半!(猪啊!)所以建议后来者:重视例题,要自已会做。习题中,重要章节要做、少部分不做,自测题在完成一章后做,总习题不做。
教训之二:全面出击,没有重点
我从头至尾把教材做了一遍,因为内容太多,公式太多,结果做了后面的,忘记前面的。到最后,脑壳里仍是一团酱糊。其实,高数是相当严密的科学(还用你说!),从头推到尾!几个重点:极限、导数、不定积分、空解、微分方程,书后都有大量的习题,一个小题就有二十至三十个子题,这就是重点罗。
教训之三:死钻牛角尖,看得太难
举个例吧,求微分方程的解,我在“二阶常系数非齐次方程”一节上,花了些时间,先看不懂,做了许多题,看了许多例题,才搞明白是怎么回事!结果一看历年试题,人家根本就不可能出那么繁的题!这样的例子很多,还有各种物理应用,也根本就不会考!而傅立叶级数,只要会公式,三个边界上公式,就可以了,至于如何来的、如何应用,可以不去管他。于是我得出一结论:看不懂的,根本不会考。看得懂的、似是而非的,就要多看多练习。
给大学新生——高等数学学习方法
目前,每当一年高考结束,数百万高中学生通过自己的奋力拼搏,在同龄人中脱颖而出,升入自己梦寐以求的各类高等院校开始在新的环境进行学习的时候,社会上各大媒体都会不断地重复一个话题:一个高中生怎样尽快地从心理上、生理上等方面溶入新的环境,成为一名合格的.大一新生?而且不时的在电视新闻或报刊出现大一的学生在新的环境中沉眠于网络或电子游戏,而跟不上大学的学习进度而退学的例子。笔者认为:一个高中生升入大学学习后,不仅要从环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。我在高等工科院校从事高等数学的教学工作已有三十余年,高等数学在工科院校的教学计划中是一门基础理论课程,是大一新生必修的课程,它对于各专业后继课程的学习,以及大学毕业后这类工程技术人员的工作状况,高等数学课程都起着奠基的作用。如在校的继续学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学……等等,也才能学好自己的专业课程。又如当毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到数学知识。因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。
大学数学学习心得 4
何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。
在安适的山寨容易埋葬憧憬,在舒适的田野容易迷失方向。失去竞争实力时才去感叹时光如逝,何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。我希冀,我付出,所以我收获。你是否也像我一样为考研奋斗而最终收获呢?你的心中是否有明确的计划去实现你的理想呢?在此我希望与大家分享自己的心得与体会,使大家少走弯路,顺利攀登考研高峰。
制订好整体复习计划,合理安排复习时间,是相当重要的。对数学复习而言,我将其大体分成三个阶段。
一、以书为本,总体把握
因为课本对基本概念的定义,基本原理的推导都是十分准确、精练的,掌握了这些基础知识体系,后续阶段的复习会取得事半功倍的效果。有些同学一开始就盲目地追求做题数量,忽视了课本的复习,那是极不可取的。必须通过对课本的.复习,理出一个知识框架体系,从总体上把握考点。另外,必须定期总结和巩固前一阶段所学习的知识,温故而知新。
二、认真做题,广积思路
众所周知,数学还是以练为主的。除了第一阶段必须完成课本上的习题外,主要的精力应集中在陈老师和黄老师本书所提到的黄老师均为黄先开教授。主编的《复习指南》上。刚做这本书上的习题时,我真有点力不从心,有时觉得解题方法很奇特,而答案也有些突兀。经过陈老师和黄老师上课时仔细地讲解,我对这些难点有了更深刻的理解。老师们稳重的授课风格,有条不紊的解题思路,以及循序渐进、举一反三的教学方法使大家能够更有效地吸收知识。我想强调融会贯通的重要性,千万别为了做题而做题,因为做题只是一种手段而已。应通过做题将所学知识点联系起来,并将所学的思路与方法为己所用。
三、研究真题,查漏补缺
从一些研究生介绍和自我感觉来说,真题的作用绝对是其他模拟题所不可替代的。只要你仔细研究就会发现历史是如此惊人地相似,很多考题都是貌离神合。应该用一到两个月的时间来做和研究近十年真题,包括数(一)到数(四)中你要考的内容。这不仅可作为检测自己最直接的手段,而且更重要的是能让考生熟悉考试的内容和侧重点,了解命题人的命题思路。在分析真题时,可找出自己的不足,再回到课本和辅导书进行复习巩固,理解的程度自然就加深了。至于模拟题应有选择地做几套,目的只是练练手,切勿一味贪多。
当然,检验复习效果要靠考试,所以在抓做题的同时也要注意应试技巧的训练。主要做到快、准、全。快要求你通过分析能迅速找到解题思路:准则要求解题过程中运算要准确无误;而全则是必须按标准答案的步骤答题。以上三点需要你在平时训练中慢慢积累,如在做真题时严格按考试时间和要求检测自己,通过八套左右的练习,到考试时自然是水到渠成了。最后衷心祝愿师弟师妹们在来年的考研中取得理想的成绩。
大学数学学习心得 5
回顾大一的高数学习历程,感慨颇多。高数在整个大学的学习课程中占据这着非常重要的地位。其一,高数的学分是所有科目中最高的。第一学期5学分,第二学期6学分。其二,高数在考研数学中将近80%的比例。而考研数学的成绩会很大程度上决定考研的最终成绩。其三,高数是学习其他的课程的基础。比如我们大二上学期学的大学物理,还有其他学院的线性代数等等。对于大一同学来说,高数就是一道必须迈过坎。作为一个过来人,今天我就说说关于高数的点滴想法。谨以此与大家分享。
学习任何东西都需要工具,学习数学更是要多种工具并进。首先,你要有足够的课外参考书来供自己参考。没有参考书,只有课本是根本不行的。你可以去学校的图书馆借阅相应的书籍。网络是所谓的公开式大学,有电脑的同学可以从网上查阅相关的资料,不会就找“度娘”。既可以提高自己搜索信息的能力,又节省了时间。
概念定理永远是数学的灵魂。我在学习高数过程中非常重视概念的理解,定理的推导,知识点间的联系。例如:极限的概念及其证明,导数与极限的关系,连续与可微的关系函数极限连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、常微分方程。很多同学会说“我也知道概念很重要,可我就是理解不了啊!”类似这种情况的同学不在少数。我给的建议是:逐字逐句阅读。不会不懂就要借助以上所说的工具来学习。概念理解了,很多东西就迎刃而解了。当时我对概念理解很是郁闷,没得办法,只能一字一句的解析,一点一点的抠。慢工出细活嘛,时间长了就理解了。相信:功到自然成。
练习,练习再练习;总结,总结,再总结。坚持,坚持再坚持。第一次做后面习题会错很多,可能一晚上就做那么两道题。请你不要气馁,谁都是这么走过来的。错了的题要总结。过几天翻过来再做,再总结。反反复复,你做题的速度会越来越快,总结的东西会越来越精炼。可能你会用整整的一天去练习高数,在这个练习过程中会很痛苦,但是你一定要坚持下来。正所谓:宝剑锋从磨砺出,梅花香自苦寒来。
以上两点就是我学习数学的精华所在。但是这够了吗?这远远不够!按照这样的做法,你上课会听得懂,作业也慢慢会做了。但是你能在众多高手中脱颖而出吗?你需要做的'还有很多。
下面是的我的一些建议:
首先是预习。你的进度要比老师的进度至少快一节,这样你才会更好的掌握课堂知识和更好地学习总结。有能力,有时间,你就再往后预习。积累问题,带到课堂去问老师。这也是让老师认识你,让同学认识你的最好机会。
其次是练习,总结。上面提到过,数学能力是慢慢通过大量的做题和实践中培养出来的,我们要不耐其烦的做题来提高数学素养。再者就是课后拓展,有能力的同学课后可以做一些题来扩展自己的思维。借助网络,借助参考书等等。
最后我再说说考试的内容吧。期中考试和期末考试很多题都是课本上的,也有很多是上一学期考试的原题。所以针对性的进行复习会起到意想不到的效果。熟练解决课后的习题,考个好成绩不成问题。
学习数学虽说枯燥,但期间也充满着很多的乐趣。做出一道题,总结出一类型题都会让你高兴地蹦地三尺,这是其他科目带不来的。希望我的这些建议对大家学习高等数学有所帮助,你的进步就是我的欣慰!
大学数学学习心得 6
在一开学的时候,我便左右开弓,每一天都在预习高数和现代,但是上了两节课所受的打击太大了,一个晚上预习的知识老师一节课就Pass了,而我相信大多数人都是云里雾里,不知老师之所云。课后作业更成了大家的负担,抄作业,抄答案之风狂刮。这不能不说是一种悲哀,大家都是能考入一本的学生,至少你的学习方法不会有太大的问题,但为什么和高中的情况相差如此之多呢?后来我经过细心观察发现了端倪,这是因为大学这两科数学的思维方法和高中的大相径庭。高中对于题目更注重的是解题的方法,也就是“表”,不是很注重定义定理;而大学则不然,大学翻开书,全是黑体字,定义定理推论,解题没有什么花招,就把东西往定义定理上拉就行,这就是“本”了。在曾经我和人探讨过奥数的问题,奥数标榜自己超前学习,而我对此嗤之以鼻。
在初等数学中,根本不存在超前与落后之说,比如对数和幂函数这对逆运算,我们都是学的幂函数,所以后来高中接触对数感绝很难理解,但如果我们先学习对数,相信任何人都会对幂函数感到困惑。当时我在想,能不能把高等数学与初等数学倒过来学习,我到现在的到了答案,不行!高等数学用到了初等数学的什么呢?有的人说计算能力,有,但是很少,更多的是学习数学十几年的那种观察能力和对于数字的'敏感程度。如果你没有这项,恭喜你,你得到了高数和线代的两本天书。
上面说了关于思想的区别,下面来说一下布局方面的区别。高中的数学的知识点泛而杂,连贯性不强;而大学则不然,一章一节的连贯性很强,经常出现用上一节的习题结论直接推出结果的情况。这就要求我们每一章每一节都要砸牢。千万不要囫囵吞枣的过去,那样到后面你会后悔的。
大学数学学习心得 7
通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。所以希望大家无论如何,一定要把高数考好。记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意!!!)。可能之前会听到家长或者老师会说,到了大学就可以好好玩了。不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。而且,大学其实并不比高中轻松(这句话大家一定注意)。
下面我来介绍一下,大学高数的一些学习方法:
第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。因为,大学课程的进程可不是一般的快。希望大家能保持课时比老师快两节,练习比老师快一节。最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。
第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。
第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的`题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。希望大家认真对待,不要气馁,不懂就问。这里的最低限度就是课本例题、练习册,一定不能再少了。想拿高分的同学,一定要多做题(范围也就是课本和老师讲的题),特别是向拿奖学金的同学。
第四,希望大家把学习时间一定要给足了,只靠考前突击,高数是没办法过的,除非你是天才。强烈建议大家去自习室,养成晚自习的习惯。宿舍的学习环境并不好,如果就想在宿舍学习,那么你必须先把桌子收拾干净,这样可以很好的提高你的注意力,原因大家应该体会的到。
好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。
大学数学学习心得 8
参加20xx年高教杯全国大学生数学建模竞赛,感觉只有一个字――累!三天紧张拼搏的日子已经过去,时间飞快走过的感觉仿佛依旧,充实忙碌的情景依然时时浮现眼前。
经过这次竞赛,我学到了许多东西,拓广了对数学的认识,锻炼了自己的思维,主要有以下几点:
一、理论联系实际
以前,对于书本上的知识永远只是停留在理论的基础上,特别是数学知识。只是沉溺于解题和公式的推导所带来的乐趣中,很少来把书本上的知识与实际联系起来。自从参加了数学建模集训-竞赛的整个流程后,才真正踏进数学的殿堂,原来利用数学的知识还可以解决工业、商业和农业等生活中的问题。
数模竞赛的题目往往是从日常生产生活中提炼、抽象出来的,尽管题目已经得到了相当程度的简化,但对于我们这些仍在学校里求学而并未遇到过如此复杂问题的学生来说,并不简单。有时我们需要对海量数据进行处理,有时我们面临的却是零数据,无论何种情形,问题的解决都很让人头疼。不过这并不要紧,我们是勇敢者,既然已经选择了挑战,无论多艰难都要坚持下去,绝不退缩,在纷繁复杂的题目中寻找规律,运用合适的数学工具加以解决,对问题进行有效的分类,并逐个击破。
二、团队合作
三天三夜的时间面对同一个题目,不仅仅是紧张枯燥、机械乏味的脑力劳动。只有真正参加了比赛的同学,才能体会到一种与集体融为一体,与数学融为一体,与竞赛融为一体的感觉。
这里需要说明一点,我们不建议论文只由一个人来写,而应由队伍中的所有同学共同完成,以体现每个人的特点、反映每个人的智慧。分了工并不是说大家各自为正、互不交流,而是为了更好地进行合作。遇到问题时,大家需要共同讨论,发表自己的见解并理解同伴的想法,最后将意见统一起来。有的时候即使自己感觉别人不对,如果多数人意见统一了,也最好能同意他人的看法,这需要对队友充分的信任且具备否定自己的魄力。如果分工不当、配合失误,往往会导致竞赛的失败,对此我们一定要小心谨慎。
竞赛中的合作是一种艺术,只有大家不断的磨合,才能使合作达到默契的程度。
三、顽强的'意志力
通过这次比赛使我重新认识了自己,72小时的连续奋战,不敢相信我的体力会如此充沛,能把题目做出来,写出了还算成功的论文来,不管得奖与否,这对我们已经是最大的肯定了。这次比赛也让我明白了一个道理:人的潜能是巨大的,关键是自己怎样去挖掘。记得参赛第一天早上8点,当我们拿到题目的时候,对着密密麻麻几千字的题目,只能用四个字来形容我们当时的表情――一头雾水;当第四天上午,我们把经过三天三夜的汗水与脑汁换来的论文时,我们终于松了一口气。
总之,这次参赛经历培养了我的综合素质,比如计算机应用能力,检索文献能力,学习新知识的意识与能力,论文撰写能力等;在和队友一起奋斗的过程中,使我们建立了深厚的友谊;在和指导老师的交往中,使我在更深层次上理解了数模;与周围的交际能力也得到提高,领悟和理解别人的意思的能力也得到了很好的锻炼。
数模,我们永远的老师!
大学数学学习心得 9
在一开学的时候,我便左右开弓,每一天都在预习高数和现代,但是上了两节课所受的打击太大了,一个晚上预习的知识老师一节课就Pass了,而我相信大多数人都是云里雾里,不知老师之所云。课后作业更成了大家的负担,抄作业,抄答案之风狂刮。这不能不说是一种悲哀,大家都是能考入一本的学生,至少你的学习方法不会有太大的问题,但为什么和高中的情况相差如此之多呢?后来我经过细心观察发现了端倪,这是因为大学这两科数学的思维方法和高中的大相径庭。高中对于题目更注重的'是解题的方法,也就是“表”,不是很注重定义定理;而大学则不然,大学翻开书,全是黑体字,定义定理推论,解题没有什么花招,就把东西往定义定理上拉就行,这就是“本”了。在曾经我和人探讨过奥数的问题,奥数标榜自己超前学习,而我对此嗤之以鼻。
在初等数学中,根本不存在超前与落后之说,比如对数和幂函数这对逆运算,我们都是学的幂函数,所以后来高中接触对数感绝很难理解,但如果我们先学习对数,相信任何人都会对幂函数感到困惑。当时我在想,能不能把高等数学与初等数学倒过来学习,我到现在的到了答案,不行!高等数学用到了初等数学的什么呢?有的人说计算能力,有,但是很少,更多的是学习数学十几年的那种观察能力和对于数字的敏感程度。如果你没有这项,恭喜你,你得到了高数和线代的两本天书。
上面说了关于思想的区别,下面来说一下布局方面的区别。高中的数学的知识点泛而杂,连贯性不强;而大学则不然,一章一节的连贯性很强,经常出现用上一节的习题结论直接推出结果的情况。这就要求我们每一章每一节都要砸牢。千万不要囫囵吞枣的过去,那样到后面你会后悔的。
大学数学学习心得 10
跟着学霸学数学,一切都不难!
首先要准备若干个本,第一,笔记本,这个笔记本要记录老师的上课内容,包括例题、定义、公式等等,下课就要复习,争取一个礼拜一个月再回归一下,巩固记忆。
第二个本就是一个总结笔记的笔记本,按章节模块来,比如立体、平面等等,然后总结一下最重要的内容,比如公式,比如小的理解点等等。这第一个本是我们课下复习要用的,第二个是提升是精华,是我们在大考前,或者高考前省事省时复习的`秘籍,到时候我们只需要回顾这精炼笔记本的内容即可对知识有大致的回归和熟悉了。
其余就是改错本和好题本。改错本,大家把自己错的,但又不是非智力因素,意思就是不是数算错了题看错了这样的题(因为这些错误下次可能不犯了,也可能继续,我们不控制)而是我们理解出现偏差,思路出现阻塞的题,我们进行纠正。错题本一定要利用好,我们要记住,并且定期回顾,我的习惯是周末,把错题本拿出来,看一番,每个月末再看一次,这样一次又一次,加深印象,否则你放心,所有的错题都是形式,都没用。
我们在看错题的时候,还有一个小技巧,就是比如我们有10个题,我第一次周末总结时看,我拿荧光笔(记号笔)把我觉得很好的题画出来,比如1、2、3、4、7、8、10,然后第二个周末时候我主要就看这几个好题了,然后把我有一次出现思路差错的归为新一类,用荧光笔(记号笔)再画一次,比如这次剩下的就只有2、4、8了,这样每次都只看画荧光笔的,既有针对性,也省事省力,避免全看这种不显示的事发生。好题本是说我们把我们觉得经典的好题记录下来,尽管我们对了。所以希望大家可以把典型的基础的好题记一下,然后考前来重点看一下这个记录库。
加大练习量,不断总结,就可以胜利。我当时数学的本有大概9本左右,2个笔记本,其余都是错题和好题。我们一定要加大训练度,这样才能让自己的计算能力潜移默化的提升。但是题海战术一定要建立在基础知识掌握熟练的基础上,不做顾此失彼,本末倒置的事情。
大学数学学习心得 11
我们从小学就开始学习数学,一直学到高中。上了大学,还要学习高等数学。高数作为一门重要的基础课程,是所有大一新生的必修课,也是考研的科目。
高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等。从形式上讲,学习方式也很不一样,一般都是大班授课,进度快,老师很难做到个别辅导,所以对自学能力的要求很高。
我一直很重视高数的学习,上课认真听讲,记好笔记,课后做练习题。这学期还报了高数选修课,不仅是因为学分多,更可以多学一点知识。
老师把前面学的知识,按章节总结题型,讲解解题技巧,并配有难一点的考研题或是竞赛题。
刚开始时,高数选修课很火爆,很多没报名的同学也来听课,导致我们只能坐在后面几排,他们上课听讲很是认真,笔记记得也很详细,老师的提问总是很快地就回答出来。为了不输给他们,我们中午就去占前排的座位,上课认真记笔记,目不转睛地看着老师。
这学期的高数明显难与上学期的内容,但为了通过考试,为了考研,必须打起12分的精神努力学习。
高数有别于其他科目,这就要求我们有很高的思维性和理解力,与此同时,也要不停地做题和总结。我们学习高数有一个共通的地方,就是我们在高中时期学习数学养成了一种固定的模式,就是按照老师给定的格式,给定的思维去思考问题。但是在大学,我们面对的是高数,有时证明某种定理就需要很长时间,在做题中还会遇到各种各样的问题,很多事情都需要我们自己去完成。正是由于这段时间的高数学习,培养了我们自学和总结的能力。
高数当中我们会经常遇到很细的知识点,具体说就是惯例中的特例,那些先人总结出的各种定理,我们都喜欢用,甚至遇到类似的情况就生搬硬套,而忽略了很多条件,不但不利于我们对知识的掌握,还会起到负面作用,就是错误理解,导致相关知识都会变得相当混乱。只有深刻理解知识,了解它所能应用的条件和环境,之后才去实战中应用。而我们的重点就是在做题中总结,不断地增长自己的经验,培养自己解决问题的能力和更高的思维能力。
学习高数很重要的一点就是联系,我们看到有很多东西表面上是分散的,而且是独立的.,但是这其中都是紧密联系的。我们开始学极限,微分,积分,以及微分方程,多元函数积分,多重积分,曲线曲面积分,这些知识都是紧密地联系的,是逐层递进的。极限是高数的基础,所以一开始我们就先学习极限。关系是明朗的而且清晰的,我们学习只需要着重把握各章重点,做好联系就可以了。
学好高数,我认为,一定要把教材看懂,尤其是小结的部分,可以使你的学习目的更明确,做到有的放矢,不必花太多时间在次要的内容上。每看完一章就反复琢磨书后的小结,找准重点后再重新把书中的重点知识学习第二遍,力求一定掌握重点知识,并会做相应的习题。其次,一定要把书后的练习题做一遍,适当使用参考书,因为只有不断的练习,才能提高解题速度,并熟练记住公式。做完之后再对着书后的答案检查,什么地方做错了,通过分析就可以尽量避免在考试时犯同样的错误。对于书中不会做的题目或者是看不懂的例题,一定要及时向同学、老师请教,直到弄明白为止。
考试前的一个月,就做前几年考试的试题,了解一下考试出题的类型和哪一部分内容在考试中占的分数比较多,对于分数少而又比较难的部分,在时间不够的情况下可以有选择地放弃。
考试时,一定要细心,会做的题,一定要拿满分。很多学长就是差几分没能通过,其中一个重要原因,就是会做的题,由于种种原因,没有拿满分。这一点虽然是老生常谈的问题,却是我们最容易忽视的一点,也是最关键的一点,如果我们在这一点上失误了,就可能前功尽弃。
此外,提高45分钟课堂效率,上课认真听讲,记好笔记。这一点看似平常,但做好并不容易,因为我们学习的大部分时间都是在课堂上,如果不能很好地抓住课堂时间,而寄希望于课下去补,则会使学习效率大打折扣。我们会有困的时候,会有心情不好的时候,还会受到其他同学的的影响。听课时,更不可挑挑捡捡,会的不听,不会的才听。会的地方,听听老师深刻独到的见解,加深对知识的理解。不光要记老师的板书,更要记老师讲课时对解题思路的讲解,因为老师不可能把所有的思路都以板书的形式呈现出来。实际上,学高数就是学各种题型的解题思路。
学习是个循序渐进的过程,只有平时一点一滴地积累,不断夯实基础,才能学好高数,才能达到比较高的层次,统观全局。切记“一分耕耘,一分收获”。
下周高数选修课就要结束了,在10周的课上,老师把以前的知识给我们复习了一遍,还学到一些技巧,并做了一些有难度的题,开拓了思路,让我们认识到自己的不足,明确了自己的目标,可谓收获颇丰。
大学数学学习心得 12
突然发现定州实习两个月了,原本以为很漫长的岁月已过去了五分之一。这一个月里,我真是充分体验了什么是酸甜苦辣。日子一天一天的过着,感觉自己也越越像一名正式的数学老师,每天备,讲。布置作业。一切都好似沿着正常的轨迹行驶着。
记得第一次面对一百多个调皮可爱的哈孩子时,慌了神,手无举措,在学校学的一些方法在他们面前实施,只想逃开。鼓起勇气站上讲台的时候,一股神圣的力量支配着我,突然自己心中的忐忑消失一空,侃侃而谈。心目中的.第一节是那么的完美,在我心目中,孩子也是那么的安静,那么的完美。错错错,一切都是错觉,但又那么的真实,第一节的状态终究只是镜花水月。孩子们的新鲜感过去后,我终究是没法找回第一节时的那种堂。
回头翻看这一个月的每一天,满满的全是充实忙碌的身影和沉甸甸的收获,感悟,很幸运选择了顶岗实习,不仅锻炼了自己,也使生活充满乐趣,惊喜,有滋有味!
在顶岗期间我感觉到对待学生还是要严格一些,现在学生缺了一种奋进和严格要求自己的精神,有候你不打击他们,他们都不清楚自己到底有几斤几两,总以为自己很牛。但这个打击的力度又要适度,要去顾及学生的承力,说话又不能太伤他们,不说重一点话对他们又不起作用,说重了有怕他们受不住。真的很难办,无从下手,只能感叹说话是一门艺术。
大学数学学习心得 13
当时选选修课的时候,我很犹豫要不要选数学提高班,因为选修课在我心目中一直是以培养兴趣爱好为目的的,好像并不关学习什么事,我本人也不是特别喜欢数学。但是在母上大人的督促下我还是抱着试一试的态度选了。所以大概来说我选数学提高班这门选修课的时候抱着提高数学成绩的目的`选的,虽然其实在成绩上的长进并不那么明显,但是提高班确实让我获得了许多学习数学的乐趣和方法。在一学期的选修课中,我们大致按照数学行课顺序和速度,一章接一章的复习了不等式,立体几何等等很多章节。其中我对立体几何的印象最深,可能也是因为自己比较喜欢吧,所以收获也比较多。
另外就是我对数学的态度。从小到大我都不喜欢数学,从来没有喜欢过,可是又迫于应试教育的无奈,补了很多课,却都不济于是。我从来没有想过我这辈子可能会有那么一点喜欢数学,但是我确实这样做了。大概是从学习立体几何开始,我慢慢发现其实数学也是很有趣的。从这个时候开始,我也是第一次从心底里开始想上提高班,也是获益的开始。提高班上,我不仅复习了课堂上的知识,弥补了漏洞还学习了方法收获了快乐。
提高班是一个很好的与老师和同学交流数学问题的平台。平时或许没有时间和精力去深究一个数学问题,提高班就提供了一个良好的时间,让大家畅所欲言,发现新知,同时又有老师可以引导大家思考问题,解决问题。这种轻松愉悦的气氛真的可以让我沉浸于数学之中,发现许多数学与我的契合点,从而发现快乐。总的来说,提高班真的让我获益匪浅,如果还有机会的话,我还愿意选这门选修课。
大学数学学习心得 14
近日,我有幸参加了一场大学数学前沿讲座,该讲座由著名数学家主讲。他以通俗易懂的语言,展示了数学的魅力,让我领略到数学前沿的奇妙世界。通过这次讲座,我不仅学到了新的数学知识,也锻炼了自己的思维能力和解决问题的能力。
首先,讲座中数学家介绍了一些在数学前沿领域的重要成果。他提到了数学家们在代数、几何、概率等各个领域的研究成果,深入浅出地解释了这些概念和定理的背后原理。例如,他以代数方程为例,通过具体案例和图像展示,向我们展示了“一个解对于两个未知数”、“二次方程的解与图像的关系”等概念。这些生动的示例使我更加直观地理解了数学在实际问题中的应用。
其次,讲座中数学家分享了他在数学研究中的心得和体会。他向我们讲述了他过去的探索历程和遇到的困难,以及如何逐步解决问题并取得突破。他强调数学研究需要耐心和毅力,要善于发现问题、提出猜想,并通过严谨的证明加以验证。这些反思和经验对于我个人的学习和科研也有很大的启发意义。我深刻体会到,数学的.发展离不开数学家们不断的努力和坚持。
再次,讲座中数学家强调了创新的重要性。他讲述了一些数学家们在研究过程中提出全新的方法和理论,从而改变了人们对数学的认知。他鼓励大家在学习数学的过程中要不断思考、质疑,并勇于提出自己的想法。正是通过这样的创新思维,数学研究才能不断进步,产生更多的新的数学理论和方法。这番话让我对数学的学习更加有了动力和热情,我希望通过自己的努力也能够为数学的发展做出一些贡献。
此外,在讲座的问答环节中,数学家与我们进行了互动交流。我们可以自由提问和讨论自己对数学前沿的疑问和观点。数学家在我们的问题中给予了详细的解答和指导,使我们更加深入地了解了数学前沿的研究方向和方法。这样的互动让我深刻感受到了学术研讨的魅力,也受益匪浅。我开始更加积极地参与学术交流,与同学们分享自己的想法和见解,相信通过这样的学习方式,我会不断进步。
总的来说,这场大学数学前沿讲座不仅让我拓宽了数学知识的广度和深度,更重要的是让我领悟到了数学研究的方法和精神。通过数学家的讲解和互动交流,我懂得了数学研究需要有耐心、毅力和创新精神。我将以这次讲座为契机,更加努力地学习数学知识,培养自己的创新思维和解决问题的能力,为数学的发展贡献自己的力量。同时,我也希望能够参加更多类似的讲座和学术交流活动,与更多的数学家和同学们互动、交流,不断提高自己的学术水平。数学的魅力无穷,我将努力追求数学的前沿,在这深奥的领域中不断探索与发现。
大学数学学习心得 15
作为一名数学专业的大学生,我一直对数学有着浓厚的兴趣。近日,我有幸参加了一场关于数学的讲座,这次经历让我收获颇多,深感数学的魅力与无限可能。下面,我将结合自己的角度和感受,以五段式的形式分享我对这次数学讲座的心得体会。
第一段:导入引述。
主持人在开始讲座时用数学家庞加莱的一句名言作为导入:“数学是科学的皇后”。这句话犹如一颗种子撒入我的内心,我对数学的期待和好奇感进一步被激发。通过这个导入,我对本次讲座充满了期待。
第二段:个人感受。
讲座开始后,主讲老师详细介绍了数学的基本概念和魅力。他强调了数学的应用广泛性以及它在解决实际问题中的重要性。我深感数学不是一门枯燥的学科,而是一门充满创造力和想象力的科学。通过讲座,我对数学的热爱和兴趣得到了进一步加深。
第三段:知识分享。
在讲座的后半部分,主讲老师通过实例给我们介绍了一些数学定理和定律。他不仅讲解了定理的产生背景和推导过程,还分析了定理在实际问题中的应用。例如,他详细讲解了费马大定理的由来和证明,这一定理深刻地影响了后来数学的发展。通过这些知识的分享,我对数学的理论知识有了更深入的了解。
第四段:数学的启迪。
讲座中,主讲老师强调了数学对于人们思维方式的启迪作用。他说,数学可以培养人们逻辑思维能力和问题解决能力,而这些能力在我们日常生活中无处不在,并且对我们的学习和工作产生深远的影响。我深以为然,数学的.思维模式带给我在其他学科中的灵感与启迪,使我能更好地应对各种挑战。
第五段:总结感悟。
通过这次数学讲座,我深刻体会到数学的魅力和无限可能。数学不仅是一门学科,更是一门富含智慧和思维方式的科学。它可以帮助我们解决实际问题,培养我们的逻辑思维和问题解决能力。我深信,在今后的学习和工作中,数学将为我提供宝贵的指导和启示。
通过这次讲座,我对数学的热爱更加坚定了。我将在今后的学习中深入研究数学,探索其中的奥妙与美妙。我相信,只有通过不断学习和实践,才能更好地理解和应用数学的精髓,并为人类社会的进步做出应有的贡献。
大学数学学习心得 16
最近,我有幸参加了一场大学数学讲座,讲座内容涉及了优化算法及其在实际问题中的应用。这场讲座内容丰富、深入浅出,给我留下了深刻的印象。在这篇文章中,我将分享我在这次讲座中所得到的一些心得体会。
在讲座当中,讲师首先介绍了什么是优化问题以及优化算法在实际问题中的作用。他通过引入实际案例,生动形象地向我们展示了优化算法的重要性。随后,他详细介绍了几种常用的优化算法,如贪婪算法、遗传算法和模拟退火算法。讲师不仅讲解了这些算法的原理,还通过实例演示了它们的应用。最后,他对如何选择合适的优化算法给出了一些建议,并就该领域的前沿研究进行了简要介绍。
这场讲座深深地触动了我对数学的兴趣和求知欲。通过讲师对优化算法的讲解,我逐渐了解到数学不仅仅是一堆公式和等式的集合,更是一种解决实际问题的工具。讲师以通俗易懂的.语言向我们解释了复杂的数学理论,让我彻底打破了数学只是一门难以理解的学科的旧观念。我开始意识到,数学是深深嵌入到我们日常生活中的,无论是计算机算法还是经济决策,都离不开数学的支撑。
讲座中讲师提到的几种优化算法给了我很多启发。首先,贪婪算法的思想让我明白了在求解问题时,有时候不必追求最优解,而可以选择局部较优的解。这种思维方式对优化问题的求解提供了新的途径。其次,遗传算法和模拟退火算法的引入让我意识到在复杂的问题中,寻找全局最优解需要有更多的探索和迭代。这使我明白了解决问题的方法不应一成不变,而应根据具体情况进行灵活应用。
这场数学讲座让我获得了很多知识和启示,对我今后的学习和发展产生了积极影响。我决定更加深入地学习数学,并将其应用到我的专业领域。我相信,通过不断学习和实践,我可以进一步理解优化算法的原理和应用,并能在未来的工作中运用数学的智慧去解决实际问题。同时,我也期待着参加更多类似的讲座和学术交流活动,不断提升自己的学术水平和综合素质。
通过这次大学数学讲座,我对优化算法及其在实际问题中的应用有了更深刻的理解。讲座的内容生动有趣,让我彻底改变了对数学的看法。我决心将数学作为我未来学习和研究的重要方向,并积极将所学的数学知识应用到实际问题中。我相信,通过不断学习和努力,我可以在未来的学术和职业道路上取得更大的成就。
大学数学学习心得 17
我学的是数学,在论坛上看了不少考研经验分享,但是关于数学专业的经验分享不算很多。虽然自己考得学校不在论坛中热议之内,但还是愿意抛个砖,期望以后有更多的数学专业的同志们分享自己如玉般得心得。各位,献丑了!
关于公共课
政治和英语方面的经验分享太多了,每个人都是每个人的时间安排,都有自己的一套方法,我觉得适合自己就可以。我要说的就两点:一是要有耐心,特别是在加强基础阶段,没必要纠结单词记不住,阅读错很多,只要紧紧的HOLD住自己的急躁,改变会在你不确定的某天降临。二是不要贪图资料的多少,关键是精,反正我周围有不少人随风而动,听说什么资料好久去买,最后都是半途而废,每一本都看不了多少,还浪费钱,这样不值得的。自己咬定一本我觉得就行,我个人感觉公共课的资料都差不多,没必要纠缠与这个的。
说说数分和高代
这个我细细说道一下。
资料
我在论坛上见很多人都在问数学专业复习选择什么参考书比较好。我说说自己的体会吧!我两门课都是用的钱吉林的题集,之前也知道这书里有些许的错误,不过我用完之后觉得这些错误无伤大体,而且可能还顺便锻炼锻炼自己的纠错能力,也算巩固自己的知识吧!乐在其中吧!当然了,书中有一些比较难的题,尤其是高代那本,我觉得不用纠缠,考研没有那么高的难度。
当然了,我得承认裴礼文的数分和吉米多维奇的数分要比钱吉林的好,但是考虑到我们的重点是抓基础,所以钱吉林的足够了。如果你是要去北大之类的话,那我觉得裴礼文的还是必须得。但是我一直以为吉米多维奇的.不适合考研用,读研后可以慢慢做做。高代嘛,杨子胥的很多人都推荐,由于自己没用过,就不做评价了。
其实啊,考研最好的资料还是课本。这是我在考研后期感觉到的,那时只顾着做题做题的,后来看课本才觉得有些晚了。我推荐复旦陈传璋版的数分,自己用了觉得还不错,不论是从内容安排还是习题上,我觉得对我帮助挺大的。当然了,不同的学校可能指定的参考书目是不一样的,其实自己在这里啰嗦的目的还是想让大家多回归课本,我觉得起码三遍。
时间:时间的安排是很重要的。
首先吧,时间上耐得住寂寞,有对象的互相多谅解一些,没对象的咱还是先单着好。可能不是这么绝对,但是对我的确是这样的,当时原以为信心满满的,可是到头来如当头一棒,最初懵了一个月,后来虽然好点了,但偶尔还是有些影响的。这期间没怎么学,对着电脑不是发呆就是电影电视剧什么的,搞得没有半点精神,要说没影响绝对是假的。所以我才有了上边的说法,可能这也分人吧,最起码要是让我再来一次,我不会那么干的。尽量把更多的时间放学习上吧。对我们数学专业的同仁们更是啊!数分高代不是那么容易搞定的,拉长些战线,多用点时间总是好的。我的经验是一定要用好暑假这段时间,黄金时间啊!记得去年暑假自己没有回家,跟几个同学合租的房子,除了辅导班的课以外,大部分时间实在自习室度过的。每天早上先背会儿英语,然后上午数分下午高代。感觉特充实,效率也挺高。当时,自习室也没几个人,虽然热点,但一切还算好吧。反正自己感觉幸亏是暑期打下点基础,否则可能自己根本考不上,因为去年9、10两个月我们实习,根本复习没有什么进展。现在想想还后怕。
再谈谈数学专业
很多人都问学数学的将来能干什么。这个我也不算很明白,还好,自己还算喜欢这个专业,不致于被这个问题吓走。不过,的确也挺尴尬。
我说说自己的一点看法啊!我算一个偏向实用的人吧,搞数学研究那固然是好,但我个人还是偏于应用的,而数学的应用如果单纯的局限在数学,我觉得没什么前途的,必须和其他专业结合,而且我一直看好数学和计算机、和经济的结合,我也相信这样的结合必然是魅力无穷的。所以,数学专业的人一定需要一个比较开阔的视野,不要局限在数学这个小框框内,走出去机会还是大大的。希望自己说的是对的吧!
关于工作和考研
我只想说,与其考研后纠结考研和工作,不如在自己准备考研时把这个问题给解决了。选择好自己内心的一条路,坚持走下去必然会是好的结果。
大学数学学习心得 18
先说初试,绝大多数的数学专业初试都只考数学分析、高等代数两门课程。这两门课的知识点就那么些,所以主要考查的是你的熟练度。也就是说考研初试这东西和别的考试一样,秘诀只有一个,就是卖油翁的那句话:无他,唯手熟尔。指望在考场上那种环境下对一道原来没见过不熟悉的题目想出解法是一件很不现实的事情。就算你真的可以做到这一点,也会花掉不少的时间,而考研这种选拔性考试的设计初衷就意味着,你这样做的时候就相比其他准备充分的人已经处于劣势了。
至于具体的话,一开始你需要找一套报考学校的数学分析和高等代数的教材,从头到尾细细的过一遍,例题和习题都自己亲手做了。这个过程一方面是复习基础知识的过程,另外一方面,虽然这两门课的内容每个学校讲的都差不多,但是在具体的'某些细节以及例题和习题上还是可能会不一样的。而且一般好一点的数学专业都是自主命题的,出题人就是学校的老师,他们平时上课和出题时的参考就是本校的教材。
做完了上一步,就可以开始愉快地刷题了,一般学校都会有前几年的考研真题出售,在网上也能找到一些,这个多多益善。能做多少做多少。另外就是有那种卖的集结成书的真题汇编,一般来说内容都大同小异,可以买一套看着顺眼的做了。别的参考书的话,数学分析方面裴礼文值得一做,高等代数我一直没找到比较合适的。
说白了,考研初试的形式更接近于高考,都是考察有限的知识点的熟练程度和你见过的套路的多少。所以不用谈什么对数学的理解,什么深刻内涵,拿出笔和草稿纸,用准备高考的劲头刷题才是最好的办法。
至于复试,一般都是笔试+面试的形式,具体内容的话每个学校没有固定的套路。只能泛泛地说笔试一般是考察那些初试没有考到的专业课的内容,主要的考察方向是广度而不是深度,比如我们学校基础数学专业的复试笔试是一张卷子12道题,涵盖了实复变,泛函,常微偏微,抽象代数,拓扑,微分几何等内容,需要选五道不同方向的题作答。所以这一步很大程度是看你本科阶段整个的学习过程的。虽然也可以花时间准备,但是效果上不会像准备初试那么立竿见影。
面试的话,除开英语,很大程度上是看你和面试老师的互动交流,也就是说,很大程度上是『看脸』。除了像说的要自己『吹』自己在外。一般还要回答面试老师提出的一两个问题。这种问题的话,一般都是和你所报考的方向相关的,而且很多都是可以几句话说清楚的,所以一些基础的概念,定理什么的,记熟点儿还是有好处的。
大学数学学习心得 19
为了进一步扩大竞赛活动的受益面,提高数学建模的水平,促进数学建模活动健康有序发展,笔者在认真研究大学生数学建模竞赛内容与形式的基础上,结合自己指导建模竞赛的经验及前参赛获奖选手的心得体会,对建模竞赛培训过程中的培训内容、方式方法等问题作了探索。
一、数学建模竞赛培训工作的培训内容
1、建模基础知识、常用工具软件的使用。在培训过程中我们首先要使学生充分了解数学建模竞赛的意义及竞赛规则,学生只有在充分了解数学建模竞赛的意义及规则的前提下才能明确参加数学建模竞赛的目的;其次引导学生通过各种方法掌握建模必备的数学基础知识(如初等数学、高等数学等),向学生主要传授数学建模中常用的但学生尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。另外,在讲解计算机基本知识的基础上,针对建模特点,结合典型的建模题型,重点讲授一些实用数学软件的使用及一般性开发,尤其注意加强讲授同一数学模型可以用多个软件求解的问题。
2、建模的过程、方法。数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。简而言之,就是建立数学模型来解决各种实际问题的过程。为了使学生更快更好地了解建模过程、方法,进行剖析,让学生从中体验建模的.过程、思想和方法。
3、常用算法的设计。建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素,而算法好坏将直接影响运算速度的快慢及答案的优劣。根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS 等)设计算法,这里列举常用的几种数学建模算法。
①数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。
②蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab软件实现)。
③线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)。
④动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中,通常使用Lingo软件实现)。
⑤图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,通常使用Mathematica、Maple作为工具)。
⑥图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
4、论文结构,写作特点和要求。答卷(论文)是竞赛活动成绩结晶的书面形式,是评定竞赛活动的成绩好坏、高低,获奖级别的惟一依据。因此,写好数学建模论文在竞赛活动中显得尤其重要,这也是参赛学生必须掌握的。为了使学生较好地掌握竞赛论文的撰写要领,我们的做法是:
①通过对历届建模竞赛的优秀论文进行剖析,总结出建模论文的一般结构及写作要点,让学生去学习体会和摸索。
②要求同学们认真学习和掌握全国大学生数学建模竞赛组委会最新制定的论文格式要求且多阅读科技文献。
③提供几个具有一定代表性的实际建模问题让学生进行论文撰写练习。
二、数学建模竞赛培训工作的培训方式、方法
1、尽可能让不同专业、能力、素质方面不同的三名学生组成小组,以利学科交叉、优势互补、充分磨合,达成默契,形成集体合力。
2、在培训班上,我们让学生以3人一组的形式针对建模案例就如何进行分析处理、如何提出合理假设、如何建模型及如何求解等进行研究与讨论,并安排读书报告。使同学们在经过“学模型”到“应用模型”再到“创造模型”的递进阶梯式训练后建模能力得到不断提高。
3、有目的有计划地安排学生走出课堂到现实生活中实地考察,丰富实际问题的背景知识,引导学生学会收集数据和处理数据的方法,培养学生建立数学模型解决实际问题的能力。
4.建模的基本概念和方法以及建模过程中常用的数学方法教师以案例教学为主;合适的数学软件的基本用法以及历届赛题的研讨以学生讨论、实践为主、教师指导为辅。
大学数学学习心得 20
在追求知识的道路上,数学始终扮演着重要的角色。作为一门抽象而深奥的学科,数学的前沿研究往往需要结合复杂的理论和精确的计算方法,为人们解开自然界和人类思维的奥秘带来新的突破。近日,我有幸参加了一场大学数学前沿讲座,听到了来自一位优秀数学家的分享,深受启发与震撼。
在讲座中,数学家从数学的发展历史角度出发,对数学的前沿研究进行了深入讲解。他首先提到了数学的基础理论和应用研究之间的关系,强调了基础理论的重要性。随后,他向我们介绍了数学的一些前沿课题,如数学分析中的不可测性问题、代数几何中的奇点理论、数论中的素数分布等。通过具体的例子和实际问题,他生动地将抽象且复杂的数学理论与日常生活相结合,给我们带来了新的认识和思考。
在讲座中,我深深体会到了数学的广阔与深邃。以前,我对数学只是停留在基础的.计算和应用上,对于数学的内涵和意义缺乏深入思考。而这场讲座为我打开了一扇崭新的大门,让我认识到数学的庞大和美妙。数学不仅是一种工具,更是一种思维方式,它能够帮助我们理解世界的本质,提供了解决现实问题的有效方法。数学的前沿研究则是更深层次的思考和探索,通过数学家们的努力,我们可以发现人类知识的边界并不断突破。
这场讲座对我个人的启发非常大。首先,我认识到要成为一个出色的数学家,需要坚实的数学基础和扎实的数学思维。这也促使我重新审视自己的学习方法和态度,更注重基础理论的学习和思考能力的培养。其次,我深刻体会到数学的广泛应用性和内在联系。数学不仅仅是为解决数学问题而研究的,它与其他学科有着紧密的交叉关系,能够为科学、技术和社会问题的解决提供有力的支持。最后,我对数学的前沿研究充满了期待和敬佩。数学前沿研究挑战现有的数学理论,探索新的数学领域,为人类认识世界和解决问题提供了无限可能,这也激励着我不断探寻数学的奥秘。
通过参加这次数学前沿讲座,我对数学有了更全面而深刻的认识。数学的前沿研究并不仅仅是高深难懂的理论,它与我们的日常生活息息相关,对于人类的进步和发展起着重要的推动作用。现在,每当我遇到数学难题或者其它难题时,我会想起讲座中数学家那种充满激情的态度和不屈不挠的精神,继续探索前行。我要感谢这次讲座给我带来的全新视角和乐趣,将以更加饱满的热情和认真的态度投入到数学学习和研究中。
【大学数学学习心得】相关文章:
数学学习心得09-29
小学数学培训学习心得05-23
小学数学学习心得05-26
数学学习心得感悟05-25
初中数学学习心得01-09
数学团队活动学习心得01-23
小学数学听课学习心得06-03
组合数学学习心得05-12
新课程数学学习心得09-09
